Return to search

Extensão de técnicas clássicas para análise de séries temporais do tipo intervalo

Made available in DSpace on 2014-06-12T15:52:00Z (GMT). No. of bitstreams: 2
arquivo3072_1.pdf: 2151220 bytes, checksum: b28a86f3cf1758147db2ac214690331d (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2010 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Os dados simbólicos apresentam, em sua estrutura, formas interessantes para se transformar grandes bases de dados clássicos em novos conjuntos de dados de tamanho reduzido, facilitando a manipulação e proporcionando novas técnicas de análise dos mesmos. No entanto, mesmo com os recentes avanços promovidos por pesquisadores nesta área, o volume de técnicas de manipulação e, consequentemente, de análise de dados simbólicos (ADS) ainda é incipiente.
Uma série temporal do tipo intervalo (STI), no campo de dados simbólicos, pode ser definida como um conjunto de intervalos observados sequencialmente no tempo, em que cada intervalo é descrito por um vetor bidimensional com elementos em IR representados pelo limite superior e pelo limite inferior. O desenvolvimento de técnicas para previsão de STI é uma área de pesquisa muito promissora e os poucos resultados relatados na literatura surgiram muito recentemente.
Nesta tese, estendemos técnicas clássicas de análise de séries temporais para descrição, modelagem e previsão de STI no domínio de ADS. Neste contexto, nós apresentamos técnicas para descrição de uma STI, envolvendo cálculo de estatísticas sumárias e representação gráfica dos dados.
Na modelagem, apresentamos métodos que consistem na explicação do processo gerador da STI a partir de certo modelo, bem como métodos de estimação de parâmetros e métodos para avaliação da qualidade do modelo, em termos do ajuste

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufpe.br:123456789/1719
Date31 January 2010
CreatorsLuis Santiago Maia, André
Contributorsde Assis Tenório Carvalho, Francisco
PublisherUniversidade Federal de Pernambuco
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Repositório Institucional da UFPE, instname:Universidade Federal de Pernambuco, instacron:UFPE
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds