Este trabalho apresenta um método de predição não linear de séries temporais econômicas. O método baseia-se na análise técnica e fundamentalista de cotação de ações, filtragem wavelet, seleção de padrões e redes neurais artificiais. No modelo técnico emprega-se a transformada wavelet para filtrar a série temporal econômica de comportamentos aleatórios ou não econômicos. Após a filtragem dos dados o algoritmo de projeções sucessivas é utilizado para a seleção de padrões de treinamento para a rede neural artificial, com o objetivo de selecionar os padrões de comportamento mais importantes na série. No modelo fundamentalista utiliza-se variáveis econômicas que podem estar correlacionadas com a série, com o objetivo de aprimorar a predição da série na rede neural artificial. Para avaliação do método são utilizados dados de séries temporais econômicas referentes à cotação de preços de ações negociadas na bolsa de valores de São Paulo, onde os resultados da predição do comportamento futuro são comparados com modelos matemáticos clássicos e com o modelo convencional, que se baseia somente na análise técnica. Apresenta-se uma comparação dos resultados entre modelos técnicos, modelos matemáticos e o método proposto. O modelo matemático utilizado (ARIMA) apresentou seu melhor desempenho em séries com pouca variância, porém com desempenho inferior quando comparado com o modelo técnico e com o método proposto. A avaliação do erro de predição em termos de RMSEP evidenciou que o método proposto apresenta os melhores resultados em relação aos demais métodos. / This work presents a method for predicting nonlinear economic time series. The method is based on fundamental and technical analysis of script quotation, a multiscale wavelet filtering, pattern selection and artificial neural networks. In the technical model is used the wavelet transform in order to filter the economic time series from random or not economic behaviors. After the data filtering, the successive projections algorithm was used for the training pattern selection to the artificial neural network. In the fundamentalist model is used financial and macroeconomics variables that is correlated with the time serie in order to improve the network forecasting. For the evaluation of the proposed method are used temporal series data related to scrips prices quotation of São Paulo stock market. It presents a comparison of the results between technical model, mathematical model and proposed method. The mathematical model (ARIMA) presented better results in series with few variance, however have low performance when compared with the technical model and with the proposed method. The prediction error evaluation shows that the proposed method has better results than the other methods.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-11042008-111842 |
Date | 07 March 2008 |
Creators | Soares, Anderson da Silva |
Contributors | Paiva, Maria Stela Veludo de |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0066 seconds