O objetivo deste trabalho foi propor uma metodologia para investigar os possíveis efeitos das mudanças climáticas na disponibilidade hídrica e as alterações da demanda hídrica no futuro, através de uma abordagem estocástica, que considera projeções climáticas, hidrológicas, populacionais e agropecuárias. O trabalho foi aplicado à bacia hidrográfica do rio Ijuí, noroeste do Rio Grande do Sul, Brasil. A metodologia foi composta por cinco módulos, envolvendo: i) a modelagem hidrológica para transformação da precipitação e evapotranspiração em vazão, utilizando Redes Neurais Artificiais (RNAs), ii) a correção e análise dos cenários climáticos para o futuro, oriundos do modelo Eta CPTEC/HadCM3, iii) a modelagem estocástica das vazões mensais no futuro, iv) a modelagem estocástica das variáveis populacionais e agropecuárias para geração de séries de demanda hídrica no futuro e, v) a simulação do balanço hídrico para geração de curvas de regularização, objetivando uma análise da relação entre a disponibilidade e a demanda hídrica no futuro. Como resultados relacionados ao processo de modelagem hidrológica, destaca-se que o modelo com RNAs mais adequado para a simulação das vazões mensais apresentou apenas três variáveis de entrada, obtendo um coeficiente de Nash-Sutcliffe igual a 0,904. Através da análise de sensibilidade, foi observado que a RNA escolhida relacionou corretamente as variáveis de entrada com a saída da rede, respeitando os princípios físicos envolvidos no sistema hidrológico. Quanto à análise dos cenários climáticos e vazões resultantes do processo de modelagem hidrológica, as diferenças entre os valores simulados com base no modelo Eta e os valores observados, no período de avaliação dos modelos (1976-1990), atingiram erros algumas vezes superiores a 20%. A vazão média de longo período, por exemplo, apresentou uma alteração de 141,6 m³/s (1961-1990) para 200,3 m³/s (2011-2040). Também foi observado um incremento na vazão média e no desvio padrão mensal entre os meses de janeiro e outubro. Entre os meses de fevereiro e junho, o percentual de aumento na vazão média mensal foi mais acentuado, superando o índice de 100%. Considerando-se os intervalos de confiança das estimativas de vazão para o futuro, pode-se concluir que existe uma tendência de aumento na variabilidade hidrológica no período entre 2011 e 2040, o que indica a possibilidade de ocorrência de séries temporais com períodos mais acentuados de estiagem e de cheias. Quanto às alterações na demanda hídrica, foi constatado que a tendência de crescimento das atividades agrícolas irrigadas no período analisado é bem superior à tendência observada em relação à criação animal e ao abastecimento humano. Mantida a tendência e os resíduos modelados entre 2003 e 2010, a média das séries estocásticas geradas para o futuro indica que haverá 1.954 km² de áreas irrigadas em 2040, fazendo com que a demanda aumente de 6,3 m³/s (2011) para 28 m³/s (2040), no mês de maior demanda hídrica (janeiro). Na etapa final, ao calcular a razão entre a demanda para usos consuntivos e a disponibilidade hídrica (demanda/disponibilidade), no período entre 2011 e 2040, foi observada uma tendência de aumento neste percentual ao longo dos anos. Em média, a relação demanda/disponibilidade em 2011 foi de apenas 6,06%, variando entre 0,81% (maio) e 20,15% (dezembro). Já em 2040 esta proporção aumentou para 13,82%, variando entre 1,09% (maio) e 43,3% (dezembro). Quanto às mudanças nas curvas de regularização obtidas através da simulação do balanço hídrico em um reservatório fictício, os resultados atestam que, em caso de confirmação do cenário de mudança climática utilizado, haverá a necessidade de reservatórios com capacidade cada vez maior para atender à demanda para usos consuntivos, em virtude do agravamento das estiagens no início do verão. / The purpose of this study was to propose a methodology to investigate the possible effects of climate change on water availability and changes in water requirement in the future, through a stochastic approach that considers climate, hydrological, agricultural and population projections. The method was applied to Ijuí river basin, northwest of Rio Grande do Sul, Brazil. The methodology consisted of five modules, involving: i) hydrological modeling of monthly flows using Artificial Neural Networks (ANNs), ii) correction and analysis of climate scenarios for the future, derived from the Eta model CPTEC / HadCM3, iii) the stochastic modeling of monthly flows in the future, iv) the stochastic modeling of population and agricultural variables to generate water requirement series in the future and, v) the simulation of the water balance for the generation of curves regularization aiming an analysis of the relationship between water availability and water requirement in the future. Regarding the results of the hydrologic modeling, it is highlighted that ANN model more suitable model for the flow simulation presented only three input variables, obtaining a Nash-Sutcliffe coefficient equal to 0.904. It was observed, through sensitivity analysis, that the ANN related correctly chosen input variables with the output of the network, respecting the physical principles involved in the hydrological system. The analysis of climate scenarios and flows resulting from the hydrologic modeling process showed that the differences between the simulated values based on the Eta model and the observed values for the period of assessment models (1976-1990), errors sometimes reached more than 20 %. Therefore, one must consider that these uncertainties will be replicated in future scenarios, as to analysis of the effects of climate change on water availability. Overall, the results related to stochastic modeling of monthly flows for the future (2011-2040) showed a tendency to increase in flows. The average flow of long period, for example, introduced an amendment to 141.6 m³ / s (1961-1990) to 200.3 m³ / s (2011-2040). We observe an increase in the average flow and monthly standard deviation between January and October. The percentage increase in the monthly average flow was more pronounced between the months of February and June, exceeding the rate of 100%. Considering the confidence intervals of the estimates of flow for the future, it can be concluded that there is an increasing trend in hydrological variability in the period between 2011 and 2040, which indicates the possibility of time series with more severe periods of drought and flood. We found an increasing trend of irrigated agricultural activities above the trend towards livestock and human consumption. If the trend and residues modeled between 2003 and 2010 is maintained, irrigated areas in 2040 should reach 1,954 km², increasing water demand of 6.3 m³ / s (2011) to 28 m³ / s (2040), in the month of higher water demand (in January). The final step is to calculate the ratio between the demand for consumptive uses and water availability (demand / availability), we observe an increasing trend in the percentage in the period between 2011 and 2040. On average, the demand / availability in 2011 was only 6.06%, with values between 0.81% (May) to 20.15% (December). By 2040, this proportion increased to 13.82%, with values between 1.09% (May) to 43.3% (December). Finally, with regard to changes in the curves obtained for regularization by simulating the water balance in a fictitious reservoir, the results show that there is a need for reservoirs with increasing capacity to meet the demand for consumptive uses, upon confirmation of the scenario climate change used, because of worsening drought in early summer.
Identifer | oai:union.ndltd.org:IBICT/oai:lume56.ufrgs.br:10183/115215 |
Date | January 2014 |
Creators | Oliveira, Guilherme Garcia de |
Contributors | Pedrollo, Olavo Correa, Castro, Nilza Maria dos Reis |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0032 seconds