Orientador: Fernando José Von Zuben / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-27T03:14:35Z (GMT). No. of bitstreams: 1
Kurka_DavidBurth_M.pdf: 1660677 bytes, checksum: 7258daf8129b4dac9d1f647195775d3c (MD5)
Previous issue date: 2015 / Resumo: Com o surgimento e a popularização de Redes Sociais Online e de Serviços de Redes Sociais, pesquisadores da área de computação têm encontrado um campo fértil para o desenvolvimento de trabalhos com grande volume de dados, modelos envolvendo múltiplos agentes e dinâmicas espaço-temporais. Entretanto, mesmo com significativo elenco de pesquisas já publicadas no assunto, ainda existem aspectos das redes sociais cuja explicação é incipiente. Visando o aprofundamento do conhecimento da área, este trabalho investiga fenômenos de compartilhamento coletivo na rede, que caracterizam eventos de difusão de informação. A partir da observação de dados reais oriundos do serviço online Twitter, tais eventos são modelados, caracterizados e analisados. Com o uso de técnicas de aprendizado de máquina, são encontrados padrões nos processos espaço-temporais da rede, tornando possível a construção de classificadores de mensagens baseados em comportamento e a caracterização de comportamentos individuais, a partir de conexões sociais / Abstract: With the advent and popularization of Online Social Networks and Social Networking Services, computer science researchers have found fertile field for the development of studies using large volumes of data, multiple agents models and spatio-temporal dynamics. However, even with a significant amount of published research on the subject, there are still aspects of social networks whose explanation is incipient. In order to deepen the knowledge of the area, this work investigates phenomena of collective sharing on the network, characterizing information diffusion events. From the observation of real data obtained from the online service Twitter, we collect, model and characterize such events. Finally, using machine learning and computational data analysis, patterns are found on the network's spatio-temporal processes, making it possible to classify a message's topic from users behaviour and the characterization of individual behaviour, from social connections / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/259074 |
Date | 05 August 2015 |
Creators | Kurka, David Burth, 1988- |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Von Zuben, Fernando José, 1968-, Zuben, Fernando José Von, 1968-, França, Fabricio Olivetti de, Júnior, Eduardo Alves do Valle |
Publisher | [s.n.], Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de Computação, Programa de Pós-Graduação em Engenharia Elétrica |
Source Sets | IBICT Brazilian ETDs |
Language | Inglês |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | 89 p. : il., application/pdf |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds