Return to search

Design, analysis and validation of a twist reflector monopulse antenna system with radome

This thesis presents a new approach to the hardware test environment for a twist reflector monopulse antenna system with a radome extending current measurement practice. New research is presented on the optimisation of the design of a twist reflector monopulse antenna system with a radome, significantly improving the design and the design process. A unique extension to current measurement practice, for single channel antennas, is presented to determine the best practice method on phase stable measurements of a multi-channel antenna on a moving positioner. A novel axis transform for a 3 axis positioner system located within an anechoic chamber is derived. It allows for true performance measurement of a twist reflector antenna with a radome. This progresses the field of antenna measurement as, uniquely, this axis transform allows the aberration caused by the antenna radome to be measured and included. Design improvements have been made on polarisation selective grids, the matched thickness of the radome and a new software method that removes the need for a comparator and increases the robustness of the antenna system. Polarisation selective grids, constructed from a set of parallel conductors, have a wide range of uses in antenna systems. This thesis shows that the depth of a copper grid line can be reduced to 15 m and still provide better than -25 dB cross-polar isolation. This is contrary to current understanding at 30 times the skin depth. A new combined approach to radome thickness optimisation is presented that reduces the time taken to calculate the optimal thickness by over 3 orders of magnitude and the computer memory by over 2 orders of magnitude without compromising accuracy. The use of a digital comparator is described and leads to a novel method to compensate for a failed feed element, verifified in both simulation and anechoic chamber measurements.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:765913
Date January 2017
CreatorsSheret, Tamara Louise
PublisherQueen Mary, University of London
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://qmro.qmul.ac.uk/xmlui/handle/123456789/24740

Page generated in 0.0016 seconds