The IronArc process is a novel process for a more sustainable production of liquid pig iron using electricity for heating and hydrocarbons for reduction. This thesis aims to facilitate its use by investigating possible refractory solutions and the gas blowing in the process which is done by a plasma generator. The process involves a slag with a high FeO content of 90 wt % and gangue content of approximately 5 wt % SiO2 and 5 wt % CaO. The interaction between such a slag and refractories of MgO, Al2O3, Cr2O3, SiC, ASZ,and C was investigated by high temperature experiments at 1700 K and by thermodynamic calculations in Thermo-calc and FactSage. In the high temperature experiments it was found that all of the studied refractory materials experienced signicant wear after 3 h, but the MgO-Al2O3 spinel refractories were the least affected. The thermodynamic calculations show fair agreement to the experiments, with the exception for the Cr2O3-spinel refractory which performed much worse than predicted by thermodynamic equilibrium calculations. It was concluded that the thermodynamic equilibrium calculations in Thermo-calc and Factsage can be used as an indicator for the stability of a refractory material, but with varying accuracy depending on the quality of the data in the database used. Since industrial refractory materials are not viable as refractory for the IronArc process a freeze-lining approach was evaluated by using CFD in ANSYS Fluent. The flow of a slag was simulated through two different designs of slag runner to investigate how well a freeze-lining protects the walls in a region with rapid flow and the cooling required to form and maintain said freeze-lining. It was found that the enthalpy porosity model in ANSYS Fluent in combination with the RSM turbulence model accurately predicts the thickness of a freeze lining when validated against experiments in the CaCl2-H2O system. For optimal protection of the refractory walls the reactor and runner should be designed to minimize the movement close to the walls as high near-wall turbulence will reduce the thickness and stability of the freeze-lining, leading to greater cooling requirements to maintain afreeze-lining. The IronArc process uses a plasma generator to supply heat to the reactor using electricity. By blowing gas and hydrocarbons through an electric arc, superheated gas is formed which when injected into the reactor provides both stirring and heating for the process. To study the behavior of the injected gas a simulation model was developed in OpenFOAM. The model for simulating gas blowing was tested in both incompressible and compressible simulations in the air-water system which were veried against an experimental study in the air-water system and found good agreement. The simulations of the plasma generator blowing were done in the compressible model to account for the high temperature and pressure present in the IronArc process. It was found that the stability of the gas blowing is dependent on the Froude number where low values cause an unstable and pulsating plume and higher values produce a more stable jet. It was also found that the empirical equation for penetration length is only valid for gas blowing with suciently high Froude numbers to produce a jetting behavior. It was found that the transition from pulsating to steady jetting in the IronArc system occurred around Froude numbers of 300 and higher values further increased the stability of the jet. For gas blowing below the transition region, the penetration length of the unstable and pulsating jet will be severely underpredicted by the empirical equation. This behavior must be considered when designing the gas blowing system for the IronArc process as the gas penetration length will signicantly influence the stirring in the reactor. Additionally, a pulsating and unstable jet produces large bubbles which risk coming in contact with the refractory walls which in previous studies has been shown to be very detrimental to the refractory lifetime. A decrease of the inlet diameter for the gas blowing increases the Froude number and the stability of the jet. By implementing the proposed refractory protection by freeze-lining and the small changes to the plasma generator inlet diameter the IronArc process can be developed into a promising industrial process capable of producing liquid pig iron in a more sustainable way. / Sammanfattning IronArc processen är en nytänkande metod för att producera flytande råjärn på ett mer hållbart sätt genom att använda elektricitet för uppvärmning och kolväten för reduktion. Denna avhandling ämnar att utvärdera möjliga metoder för att skydda infordingen i processen och undersöka gasblåsningen i processesen som görs med en plasma generator. Ett av huvudstegen av IronArc processen är tillverkningen av en slagg med upp till 90 vikts % järnoxid samt 5 vikts % kiseldioxid och 5 vikts % kalciumoxid från gångarten. Interaktionen mellan en sådan slagg och olika infodringar baserade på MgO, Al2O3, Cr2O3, SiC, ASZ, och C undersöktes i högtemperaturexperiment vid 1700 K samt med termodynamiska beräknar i Thermo-calc och FactSage. Experimenten visade att alla de undersökta infodringsmaterialen bröts ned under de 3 timmar de var i kontakt med slaggen, men de två MgO-Al2O3 spinel baserade infodringarna visade högst motståndskraft mot slitaget. De termodynamiska beräkningarna överrensstämde bra med de experimentella resultaten för alla infodringsmaterial förutom den kromoxid baserade infodringen som bröts ned fullständigt trots att de termodynamiska beräkningarna påvisade viss stabilitet. Slutsatsen är att inget av de studerade infodringsmaterialen är bra anpassat för IronArc processen men att metoden som användes för de termodynamiska beräkningarna i Thermo-calc och FactSage kan användas för att ge en indikation om stabiliteten för olika infodringsmaterial i kontakt med slagg. Dock så kommer resultaten av de termodynamiska beräkningarna vara beroende av kvalitén av databasen som används för beräkningen. Eftersom infodringsmaterialen inte kunde motstå slitaget från slaggen undersöktes en dynamisk infodring för slaggrännan i IronArc processen. Detta gjordes genom att simulera flödet och stelningen av slagg i flödesberäkningar i ANSYS Fluent i två olika typer av slaggrännor. Studien visade att enthalpy-porosity modellen för stelning samt RSM modellen för turbulens kunde förutspå stelningsförloppet i slaggrännan samt beskriva hur väl den dynamiska infodringen skyddar väggen och vilken kyleffekt som krävs för att bibehålla den. Denna modell validerades mot experimentella studier i CaCl2-H2O systemet med god överrensstämmelse. För optimalt skydd av väggarna i IronArc processen borde reaktorn och slaggrännan utformas så att flödet nära väggarna minimeras då ett turbulent flöde nära väggen är negativt för stabiliteten och tjockleken hos den dynamiska infodringen. IronArc proceesen använder sig av en plasmagenerator för att förse processen med värme via elektricitet. Genom att blåsa gas och kolväten genom en ljusbåge värms gasblandningen och trycks in i reaktorn vilket ger både värme och omrörning till processen. För att undersöka hur den varma gasen beter sig i reaktorn utvecklades en simuleringsmodell i OpenFOAM. Modellen utformades som både inkompressibel och kompressibel för blåsning av luft i vatten och jämfördes med experiment där gas blåstes i vatten. De båda modellerna överrensstämde bra med de experimentella resultaten och kunde därför användas för att studera gasflödet i IronArc processen. För simuleringen av IronArc processen valdes den kompressibla versionen av simuleringen då den tar hänsyn till de höga temperaturer och tryck som uppstår i reaktorn. Simuleringarna visade att den inblåsta gasen kan ge en stabil gas-jet om Froude-talet för inblåset är tillräckligt högt. Om Froude-talet för gasblåsningen är för lågt så kommer gasen pulsera på ett instablit sätt och skapa stora bubblor som kommer i kontakt med infodringsmaterialet, vilket tidigare har påvisats orsaka ökat slitage på infodringsmaterialet. För IronArc processen krävdes ett Froude tal på ca 300 eller högre för att skapa en stabil jet av gas, där högre värden vidare ökar gas-jettens stabilitet. Studien visade också att den empiriska ekvationen som används för att beräkna penetrationslängden vid gasblåsning endast är korrekt om gasen är en stabil jet. Om ekvationen används för att beräkna penetrationslängden för gasblåsning med mindre än det krävda Froude talet kommer penetrationslängden kraftigt underskattas vilket kan medföra att fel beslut tas när en process utformas. Genom att minska diametern på dysan som används för gasblåsningen ökas Froude-talet och därmed stabiliteten av gasjetten, vilket gör den mer förutsägbar och bättre för processen. För att vidare utveckla IronArc processen så bör den undersökta dynamiska infodringen samt de föreslagna modifieringarna till gasblåsningen användas. Då kan en lovande industriell process utformas som har möjlighet att producera flytande råjärn på ett mer hållbart sätt. Keywords: IronArc, infodringsslitage, plasmagenerator, dynamisk infodring
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-286031 |
Date | January 2020 |
Creators | Svantesson, Jonas |
Publisher | KTH, Processer, Stockholm |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Licentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-ITM-AVL ; 2020:45 |
Page generated in 0.0034 seconds