Return to search

Distributed Guidance, Navigation and Control for Satellite Formation Flying Missions / Verteilte Leit- und Regelungsverfahren für Satellitenformationen

Ongoing changes in spaceflight – continuing miniaturization, declining costs of rocket launches and satellite components, and improved satellite computing and control capabilities – are advancing Satellite Formation Flying (SFF) as a research and application area. SFF enables new applications that cannot be realized (or cannot be realized at a reasonable cost) with conventional single-satellite missions. In particular, distributed Earth observation applications such as photogrammetry and tomography or distributed space telescopes require precisely placed and controlled satellites in orbit.

Several enabling technologies are required for SFF, such as inter-satellite communication, precise attitude control, and in-orbit maneuverability. However, one of the most important requirements is a reliable distributed Guidance, Navigation and Control (GNC) strategy. This work addresses the issue of distributed GNC for SFF in 3D with a focus on Continuous Low-Thrust (CLT) propulsion satellites (e.g., with electric thrusters) and concentrates on circular low Earth orbits. However, the focus of this work is not only on control theory, but control is considered as part of the system engineering process of typical small satellite missions. Thus, common sensor and actuator systems are analyzed to derive their characteristics and their impacts on formation control. This serves as the basis for the design, implementation, and evaluation of the following control approaches: First, a Model Predictive Control (MPC) method with specific adaptations to SFF and its requirements and constraints; second, a distributed robust controller that combines consensus methods for distributed system control and $H_{\infty}$ robust control; and finally, a controller that uses plant inversion for control and combines it with a reference governor to steer the controller to the target on an optimal trajectory considering several constraints. The developed controllers are validated and compared based on extensive software simulations. Realistic 3D formation flight scenarios were taken from the Networked Pico-Satellite Distributed System Control (NetSat) cubesat formation flight mission. The three compared methods show different advantages and disadvantages in the different application scenarios. The distributed robust consensus-based controller for example lacks the ability to limit the maximum thrust, so it is not suitable for satellites with CLT. But both the MPC-based approach and the plant inversionbased controller are suitable for CLT SFF applications, while showing again distinct advantages and disadvantages in different scenarios.

The scientific contribution of this work may be summarized as the creation of novel and specific control approaches for the class of CLT SFF applications, which is still lacking methods withstanding the application in real space missions, as well as the scientific evaluation and comparison of the developed methods. / Die anhaltenden Veränderungen in der Raumfahrt – die fortschreitende Miniaturisierung, die sinkenden Kosten für Raketenstarts und Satellitenkomponenten sowie die verbesserten Rechen- und Steuerungsmöglichkeiten von Satelliten – fördern den Satelliten-Formationsflug (SFF) als Forschungs- und Anwendungsgebiet. SFF ermöglicht neue Anwendungen, die mit herkömmlichen Einzelsatellitenmissionen nicht (oder nicht mit vertretbarem Aufwand) realisiert werden können. Insbesondere verteilte Erdbeobachtungsanwendungen wie Photogrammetrie und Tomographie oder verteilte Weltraumteleskope erfordern präzise positionierte und kontrollierte Satelliten in der Umlaufbahn.

Für den SFF sind verschiedene Basistechnologien erforderlich, z. B. Kommunikation zwischen den Satelliten, präzise Lageregelung und Manövrierfähigkeit. Eine der wichtigsten Anforderungen sind jedoch zuverlässige verteilte Leit- und Regelungsverfahren (Guidance, Navigation and Control, GNC). Diese Arbeit befasst sich mit dem Thema der verteilten GNC für SFF in 3D mit dem Schwerpunkt auf Satelliten mit kontinuierlichem, niedrigen Schub (Continuous Low-Thrust, CLT) z.B. mit elektrischen Triebwerken und legt den Fokus hier zusätzlich auf niedrige kreisförmige Erdumlaufbahnen. Der Schwerpunkt dieser Arbeit liegt jedoch nicht nur auf der Regelungstheorie, vielmehr wird Regelung als Teil des Systementwicklungsprozesses typischer Kleinsatellitenmissionen betrachtet. So werden gängige Sensor- und Aktuatorsysteme analysiert, um ihre Eigenschaften und ihre Auswirkungen auf die Formationskontrolle abzuleiten. Dies dient als Grundlage für den Entwurf, die Implementierung und die Bewertung der folgenden Regelungsansätze: Erstens eine Modellprädiktive Regelung (Model-Predictive Control, MPC) mit spezifischen Anpassungen an die Anforderungen und Beschränkungen des SFFs, zweitens ein robuster Regler, der Konsensmethoden für die Steuerung verteilter Systeme mit robuster $H_{\infty}$-Regelung kombiniert, und schließlich ein kaskadierter Regler, der zur Steuerung die Regelstrecke invertiert und dessen Referenz von einem Referenzregler auf einer optimalen Trajektorie unter Berücksichtigung verschiedener Beschränkungen zum Ziel gesteuert wird. Die entwickelten Regler werden auf der Grundlage umfangreicher Softwaresimulationen validiert und miteinander verglichen. Realistische 3D-Formationsflug-Szenarien wurden der NetSat-Formationsflug-Mission entnommen. Die drei verglichenen Methoden zeigen unterschiedliche Vor- und Nachteile in den verschiedenen Anwendungsszenarien. Der verteilten robusten konsensbasierten Regelung fehlt bspw. die Fähigkeit, den maximalen Schub zu begrenzen, sodass sie nicht für Satelliten mit CLT geeignet ist. Aber sowohl der MPC-basierte Ansatz als auch der auf der Invertierung der Regelstrecke basierende Ansatz sind für CLT SFF-Anwendungen geeignet und weisen wiederum ander Vor- und Nachteile in unterschiedlichen Szenarien auf.

Der wissenschaftliche Beitrag dieser Arbeit besteht in der Entwicklung neuartiger und spezifischer Regelungsansätze für die Klasse der CLT-SFF-Anwendungen, für die es noch keine Methoden gibt, die der Anwendung in realen Weltraummissionen standhalten, sowie in der wissenschaftlichen Bewertung und dem Vergleich der entwickelten Methoden.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:28753
Date January 2022
CreatorsScharnagl, Julian
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_mit_pod.php, info:eu-repo/semantics/openAccess
Relation320377

Page generated in 0.0031 seconds