Chondrozyten stellen die zelluläre Komponente von hyalinem Knorpel dar, der die Gelenkflächen diarthrotischer Gelenke bedeckt. Über die perizelluläre Matrix (PZM) sind sie mit der extrazellulären Matrix des Knorpelgewebes, die im Wesentlichen aus Wasser, Kollagen-Typ-II (Koll-II) und Glykosaminoglykan (GAG) gebildet wird, verbunden. Die PZM gilt als wichtiges modulatorisches und protektives Element in der Signal- und Mechanotransduktion sowie für die Homöostase innerhalb des Knorpelgewebes. Degenerative und inflammatorische Prozesse führen zu irreparablen Schäden der Gewebearchitektur und -funktionalität. Die Regenerative Medizin strebt den Ersatz destruierter Gelenkflächen durch mittels Tissue Engineering hergestellten Neoknorpel an. 3D-Bioprinting gilt hier als attraktive Methode, nimmt jedoch über Scherkräfte während des Druckvorgangs auch schädigenden Einfluss auf das Überleben oder die Funktionalität der Zellen.
Zielsetzung dieser Arbeit war es, den möglichen protektiven Einfluss der PZM während des Druckvorgangs zu untersuchen. Aus porcinem Frischknorpel isolierte Chondrozyten wurden nach cast bzw. 3D-Bioprinting in Agarose-Biotinte hinsichtlich ihres Überlebens und ihrer Syntheseleistung von knorpelspezifischem Koll-II und GAG untersucht. Chondrozyten ohne PZM wurden mit Chondrozyten verglichen, die nach enzymatischer Isolation noch perizellulär Kollagen-Typ-VI als Marker der PZM aufwiesen. Chondrozyten mit PZM zeigten allgemein eine stärkere Produktion von Koll-II als Chondrozyten ohne PZM. Nach 3D-Bioprinting konnte für Chondrozyten ohne PZM eine signifikant geringere Produktion von GAG nachgewiesen werden als in der cast-Vergleichsgruppe, während dies für Chondrozyten mit PZM nicht gezeigt werden konnte.
Der gezeigte protektive Einfluss der PZM gegenüber Scherkräften während des Druckvorgangs eröffnet neue Methoden für das Cartilage Tissue Engineering. Weitere Untersuchungen sind notwendig, um dies zu bestätigen und die Translation in die klinische Forschung ermöglichen. / Chondrocytes are the cellular component of the hyaline cartilage that lines the articular surfaces of diarthrotic joints. They are bound to the extracellular matrix of the cartilage tissue by the pericellular matrix (PCM), which consists mainly of water, collagen type II (coll-II) and glycosaminoglycan (GAG). PCM is considered to be an important modulatory and protective element in signalling, mechanotransduction and homeostasis within cartilage tissue. Degenerative and inflammatory processes cause irreparable damage to tissue architecture and functionality. Regenerative medicine aims to replace damaged joint surfaces with neocartilage produced by tissue engineering. 3D bioprinting is considered to be an attractive method for this purpose, but also has a detrimental effect on the survival or functionality of the cells due to shear forces during the printing process. The aim of this study was to investigate the potential protective effect of PZM during the printing process. Chondrocytes isolated from fresh porcine cartilage were analysed after casting or 3D bioprinting in agarose bioprinting for their survival and their ability to synthesise cartilage-specific Coll-II and GAG. Chondrocytes without PCM were compared with chondrocytes that still had pericellular collagen type VI as a marker of PCM after enzymatic isolation. Chondrocytes with PCM generally showed a higher production of Coll-II than chondrocytes without PCM. After 3D bioprinting, chondrocytes without PCM showed significantly lower GAG production than the control group, whereas chondrocytes with PCM did not. The demonstrated protective effect of PCM against shear forces during the printing process opens up new possibilities for cartilage tissue engineering. Further studies are needed to confirm this and to enable translation into clinical research.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:34716 |
Date | January 2024 |
Creators | Gastberger, Katharina |
Source Sets | University of Würzburg |
Language | deu |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://opus.bibliothek.uni-wuerzburg.de/doku/lic_mit_pod.php, info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds