Parametric regression fitting (such as OLS) to a data set requires specification of an underlying model. If the specified model is different from the true model, then the parametric fit suffers to a degree that varies with the extent of model misspecification. Mays and Birch (1996) addressed this problem in the one regressor variable case with a method known as Model Robust Regression (MRR), which is a weighted average of independent parametric and nonparametric fits to the data. This paper was based on the underlying assumption of "well-behaved" (Normal) data. The method seeks to take advantage of the beneficial aspects of the both techniques: the parametric, which makes use of the prior knowledge of the researcher via a specified model, and the nonparametric, which is not restricted by a (possibly misspecified) underlying model.
The method introduced here (termed Outlier Resistant Model Robust Regression (ORMRR)) addresses the situation that arises when one cannot assume well-behaved data that vary according to a Normal distribution. ORMRR is a blend of a robust parametric fit, such as M-estimation, with a robust nonparametric fit, such as Loess. Some properties of the method will be discussed as well as illustrated with several examples. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/30493 |
Date | 14 April 1997 |
Creators | Assaid, Christopher Ashley |
Contributors | Statistics, Birch, Jeffrey B. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | application/pdf, application/pdf, application/pdf, application/pdf, application/pdf, application/pdf, application/pdf, application/pdf, application/pdf, application/pdf, application/pdf, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | etd.PDF, Ch1.PDF, Ch2.PDF, Ch3.PDF, Ch4.PDF, Ch5.PDF, Ch6.PDF, Ch7.PDF, Ch8.PDF, ch9.pdf, ch10.pdf, Biblio.PDF, Appndx.PDF |
Page generated in 0.0024 seconds