Submitted by TÂNIA MARIA DE CARVALHO null (taniacarvalho2010@gmail.com) on 2017-02-02T19:26:12Z
No. of bitstreams: 1
TESE_arquiv.pdf: 4743361 bytes, checksum: 0c094f892ee8b02e1690df7e4438651f (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-02-06T16:42:11Z (GMT) No. of bitstreams: 1
carvalho_tm_dr_bot.pdf: 4743361 bytes, checksum: 0c094f892ee8b02e1690df7e4438651f (MD5) / Made available in DSpace on 2017-02-06T16:42:11Z (GMT). No. of bitstreams: 1
carvalho_tm_dr_bot.pdf: 4743361 bytes, checksum: 0c094f892ee8b02e1690df7e4438651f (MD5)
Previous issue date: 2016-12-19 / O mapa de solos é uma ferramenta essencial para o planejamento de uso da terra e estudos que envolvem aspectos ambientais relativos a esse importante recurso natural. Técnicas quantitativas e ferramentas de geoprocessamento têm sido aliadas à interpretação dos processos pedogenéticos para possibilitar a elaboração de mapas mais precisos, obtidos por processo mais rápido e menos oneroso. Dentre os modelos aplicados, os denominados modelos híbridos empregam variáveis auxiliares preditoras e autocorrelação espacial, para viabilizar a predição de atributos de solo em locais não amostrados. A iniciativa para mapeamento digital do solo em escala mundial – GlobalSoilMap.net atua no sentido de disponibilizar representações globais de atributos de solo, elaboradas por meio da aplicação de modelo híbrido em dados legados de solos, realizando a prática do Mapeamento Digital de Solos (MDS). Com base nesse princípio, esse trabalho baseou-se na hipótese de que a aplicação da técnica híbrida regressão-krigagem, utilizando dados legados de levantamento de solo e covariáveis de relevo e sensoriamento remoto proveem mapa de atributos de solo representativos de uma área da Cuesta de Botucatu. O modelo foi aplicado localmente, a duas profundidades, para representação contínua do Índice de Avermelhamento (IAV), saturação de bases (V%), teor de areia, teor de argila, CTC e pH dos solos da Fazenda Experimental Edgárdia, para a qual são disponíveis dados de levantamento de solo. As covariáveis preditoras derivadas de um MDE e de imagem orbital foram uniformizadas a uma resolução espacial de 10 m, e os métodos foram selecionados de acordo com a verificação de correlação linear significativa entre atributos e covariáveis e autocorrelação espacial dos atributos ou dos resíduos de regressões lineares múltiplas (RLM). Os dados foram separados em subconjuntos de treinamento e validação. Os coeficientes de correlação entre atributos de solo e covariáveis foram significativos e variaram de -0,40 a 0,51. Os preditores mais correlacionados aos atributos foram Índice Topográfico de Umidade (ITU), Declividade (Decl), Aspecto (Aspc), Elevação (Elev) e índice de vegetação NDVI, sendo os quatro últimos os principais na estimação das frações texturais. Os valores de R² ajustado das RLM, entre 0,10 e 0,36, foram considerados baixos. De modo geral, os mapas de predição expuseram padrões característicos da variação espacial observada nos mapas das covariáveis preditoras, usadas na calibração dos modelos. Foi observado um incremento na acurácia entre as duas etapas do processo de RK, indicando que o mapa final é superior em relação à RLM. No entanto, os modelos apresentaram, de modo geral, um baixo desempenho quando avaliados por meio de validação externa, mesmo com a estratificação em duas áreas mais uniformes em termos de relevo. Os resultados indicaram a limitação do uso de amostragem para fins de levantamento em modelos de predição. Houve ainda dificuldade de aplicação dos modelos em função do contexto litológico complexo e da dinâmica local de formação de solos, que não puderam ser detectadas pelas covariáveis selecionadas. Apesar das limitações, os mapas de predição apresentaram coerência com o conhecimento relativo aos atributos, nas condições locais. / The soil map is an essential tool for land use planning and studies related to environmental aspects of this important natural resource. Quantitative techniques and geoprocessing tools are currently combined with the interpretation of pedogenic processes to enable the development of more accurate maps obtained by faster and less costly process. Among the models applied to it, the hybrid models employ predictive auxiliary variables and spatial autocorrelation, to enable the prediction of soil attributes in unsampled locations. The digital soil mapping worldwide project – GlobalSoilMap.net acts in order to provide global representations of soil attributes developed through the application of hybrid model in legacy soil data, performing the practice of Digital Soil Mapping (MDS). This work was based on the assumption that the application of the hybrid technique of regression-kriging (RK), using legacy data of soil survey and covariates of relief and remote sensing provide representative map of soil attributes of an area in Cuesta of Botucatu. The goal was to apply locally, in two depths, prediction models and continuous representation of Soil Redness Index (IAV), base saturation index (V%), sand content and clay content, cation-exchange capacity (CTC) and pH of the soils in Edgardia Experimental Farm, for which are available soil survey data. The predictor covariates were derived from an Digital Elevation Model (MDE) and an orbital image. They were all standardized at spatial resolution of 10 m, the methods were selected by checking significant linear correlation between attributes and covariates and spatial autocorrelation of attributes or residues of multiple linear regressions (RLM). The data were separated into training and validation subsets. The correlation coefficients (r) between soil attributes and covariates were significant and ranged from -0.40 to 0.51. The predictors more correlated to attributes were topographic wetness index (ITU), slope (Decl), aspect (Aspc), elevation (Elev) and vegetation index (NDVI), and the last four are key definers of granulometric fractions. The values of adjusted R² of RLM were between 0.10 and 0.36, which is considered low. In general, the prediction maps exhibited characteristic patterns of spatial variation observed in the covariates maps, used in the calibration of the models. An increase in accuracy was observed between the two steps of the modeling process by RK, indicating that the final map is better than the RLM. However, the models showed generally low performance, and did not provide good results when evaluated by external validation and even if the area was stratified in two smaller plots, with more homogeneous relief. The results indicated the restricted use of soil survey sampling in prediction models, and the difficulty of applying MDS in areas with complex lithology, especially where the correlation between local dynamics of soil genesis and selected covariates are not strong. Despite the limitations, the prediction maps were consistent with knowledge about soil properties in local conditions.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unesp.br:11449/148704 |
Date | 19 December 2016 |
Creators | Carvalho, Tânia Maria de [UNESP] |
Contributors | Universidade Estadual Paulista (UNESP), Zimback, Célia Regina Lopes [UNESP] |
Publisher | Universidade Estadual Paulista (UNESP) |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Repositório Institucional da UNESP, instname:Universidade Estadual Paulista, instacron:UNESP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds