By leveraging historical data together with machine learning algorithms, marketers can predict how new campaigns are likely to perform before launch. This approach can save time and resources and can help marketers optimize campaigns in current time through adjustments to increase return on investment (ROI) and reach the right target group. The objective of this thesis is to develop a predictive model through the application of feature selection techniques to assess the likability of a campaign. This study aims to identify the key features that significantly influence campaign likability and to quantify their impact. The task has been approached as a regression problem, with the objective of examine what predictors drives the liking of a campaign. The study implemented four methods for feature selection, recursive feature elimination with cross validation conjucted with random forest, lasso regression, ridge regression and decision trees. Further, to model, the following machine learning algorithms were employed: linear regression, ridge regression with cross validation, lasso regression with cross validation, elastic net with cross validation, kernel ridge regression and support vector regression. Based on the machine learning algorithm and the available data, the results indicate that the set of features generated by recursive feature elimination with cross validation combined with random forest was the most prominent and the algorithm support vector regression generated the best models. / Genom att använda historisk data tillsammans med maskininlärningsalgoritmer kan marknadsförare prediktera hur nya kampanjer sannolikt kommer att prestera innan de lanseras. Denna strategi kan spara tid och resurser och hjälpa marknadsförare att optimera kampanjer i realtid genom justeringar för att öka avkastningen på investeringen och nå rätt målgrupp. Målet med denna avhandling är att utveckla en prediktiv modell genom tillämpning av metodiker för variabelselektion för att bedöma sannolikheten för att en kampanj kommer att vara omtyckt. Denna studie syftar till att identifiera de nyckelvariabler som signifikant påverkar kampanjens popularitet och kvantifiera deras påverkan. Uppgiften behandlas som ett regressionsproblem för att identifiera vilka prediktorer som bidrar till ett positivt helhetsintryck av en kampanj. Studien implementerade fyra metoder för urval av variableselektion: rekursiv variabelselektion med korsvalidering kombinerad med random forest, lasso-regression, ridge-regression och beslutsträd. Dessutom användes följande maskininlärningsalgoritmer för modellering: linjär regression, ridge regression med korsvalidering, lasso regression med korsvalidering, elastiskt nät med korsvalidering, kernel ridge regression och stödvektorsregression. Baserat på maskininlärningsalgoritmerna och det tillgängliga datat indikerar resultaten att uppsättningen av funktioner genererad av rekursiv variabelselektion med korsvalidering kombinerad med random forest var mest framträdande och att algoritmen stödvektorregression genererade de bästa modellerna.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-226393 |
Date | January 2024 |
Creators | Carling, Albert |
Publisher | Umeå universitet, Institutionen för matematik och matematisk statistik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0171 seconds