In this thesis, we review the basic notions related to univariate regular variation and study some fundamental properties of regularly varying random variables. We then consider the notion of regular variation in the multivariate case. After collecting some results from multivariate regular variation for random vectors with values in $\mathbb{R}_{+}^{d}$, we discuss its properties and examine several examples of multivariate regularly varying random vectors such as independent and identically distributed random vectors, fully dependent random vectors and other models. We also present the elements of univariate and multivariate extreme value theory and emphasize the connection with multivariate regular variation. Some measures of extreme dependence such as the stable tail dependence function and the Pickands dependence function are presented. We end the study by conducting a data analysis using financial data. In the univariate case, graphical tools such as quantile-quantile plots, mean excess plots and Hill plots are used in order to determine the underlying distribution of the univariate data. In the multivariate case, non-parametric estimators of the stable tail dependence function and the Pickands dependence function are used to describe the dependence structure of the multivariate data.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/32756 |
Date | January 2015 |
Creators | Mariko, Dioulde Habibatou |
Contributors | Balan, Raluca, Kulik, Rafal |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds