Die Untersuchung mikrogelinster astronomischer Objekte ermöglicht es, Informationen über die Größe und Struktur dieser Objekte zu erhalten.
Im ersten Teil dieser Arbeit werden die Spektren von drei gelinsten Quasare, die mit dem Potsdamer Multi Aperture Spectrophotometer (PMAS) erhalten wurden, auf Anzeichen für Mikrolensing untersucht. In den Spektren des Vierfachquasares HE 0435-1223 und des Doppelquasares HE 0047-1756 konnten Hinweise für Mikrolensing gefunden werden, während der Doppelquasar UM 673 (Q 0142--100) keine Anzeichen für Mikrolensing zeigt.
Die Invertierung der Lichtkurve eines Mikrolensing-Kausik-Crossing-Ereignisses ermöglicht es, das eindimensionale Helligkeitsprofil der gelinsten Quelle zu rekonstruieren. Dies wird im zweiten Teil dieser Arbeit untersucht.
Die mathematische Beschreibung dieser Aufgabe führt zu einer Volterra'schen Integralgleichung der ersten Art, deren Lösung ein schlecht gestelltes Problem ist. Zu ihrer Lösung wird in dieser Arbeit ein lokales Regularisierungsverfahren angewendet, das an die kausale Strukture der Volterra'schen Gleichung besser angepasst ist als die bisher verwendete Tikhonov-Phillips-Regularisierung.
Es zeigt sich, dass mit dieser Methode eine bessere Rekonstruktion kleinerer Strukturen in der Quelle möglich ist. Weiterhin wird die Anwendbarkeit der Regularisierungsmethode auf realistische Lichtkurven mit irregulärem Sampling bzw. größeren Lücken in den Datenpunkten untersucht. / The study of microlensed astronomical objects can reveal information about the size and the structure of these objects.
In the first part of this thesis we analyze the spectra of three lensed quasars obtained with the Potsdam Multi Aperture Spectrophotometer (PMAS). The spectra of the quadrupole quasar HE 0435--1223 and the double quasar HE 0047--1756 show evidence for microlensing whereas in the double quasar UM 673 (Q 0142--100) no evidence for microlensing could be found.
By inverting the lightcurve of a microlensing caustic crossing event the one dimensional luminosity profile of the lensed source can be reconstructed. This is investigated in the second part of this thesis.The mathematical formulation of this problem leads to a Volterra integral equation of the first kind, whose solution is an ill-posed problem. For the solution we use a local regularization method which is better adapted to the causal structure of the Volterra integral equation compared to the so far used Tikhonov-Phillips regularization. Furthermore we show that this method is more robust on reconstructing small structures in the source profile. We also study the influence of irregular sampled data and gaps in the lightcurve on the result of the inversion.
Identifer | oai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:162 |
Date | January 2004 |
Creators | Helms, Andreas |
Publisher | Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Physik und Astronomie |
Source Sets | Potsdam University |
Language | German |
Detected Language | English |
Type | Text.Thesis.Doctoral |
Format | application/pdf |
Rights | http://opus.kobv.de/ubp/doku/urheberrecht.php |
Page generated in 0.0019 seconds