Continuity along reflectors in seismic images is used via Curvelet representation to stabilize the convolution operator inversion. The Curvelet transform is a new multiscale transform that provides sparse representations for images that comprise smooth objects separated by piece-wise smooth discontinuities (e.g. seismic images). Our iterative Curvelet-regularized deconvolution algorithm combines conjugate gradient-based inversion with noise regularization performed using non-linear Curvelet coefficient thresholding. The thresholding operation enhances the sparsity of Curvelet representations. We show on a synthetic example that our algorithm provides improved resolution and continuity along reflectors as well as reduced ringing effect compared to the iterative Wiener-based deconvolution approach.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:BVAU.2429/517 |
Date | January 2005 |
Creators | Hennenfent, Gilles, Herrmann, Felix J., Neelamani, Ramesh |
Publisher | Canadian Society of Exploration Geophysicists |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | text |
Rights | Herrmann, Felix J. |
Page generated in 0.0019 seconds