Return to search

Identification of transcription factor genes in plants

In order to function properly, organisms have a complex control mechanism, in which a given gene is expressed at a particular time and place. One way to achieve this control is to regulate the initiation of transcription. This step requires the assembly of several components, i.e., a basal/general machinery common to all expressed genes, and a specific/regulatory machinery, which differs among genes and is the responsible for proper gene expression in response to environmental or developmental signals. This specific machinery is composed of transcription factors (TFs), which can be grouped into evolutionarily related gene families that possess characteristic protein domains.
In this work we have exploited the presence of protein domains to create rules that serve for the identification and classification of TFs. We have modelled such rules as a bipartite graph, where families and protein domains are represented as nodes. Connections between nodes represent that a protein domain should (required rule) or should not (forbidden rule) be present in a protein to be assigned into a TF family. Following this approach we have identified putative complete sets of TFs in plant species, whose genome is completely sequenced: Cyanidioschyzon merolae (red algae), Chlamydomonas reinhardtii (green alga), Ostreococcus tauri (green alga), Physcomitrella patens (moss), Arabidopsis thaliana (thale cress), Populus trichocarpa (black cottonwood) and Oryza sativa (rice). The identification of the complete sets of TFs in the above-mentioned species, as well as additional information and reference literature are available at http://plntfdb.bio.uni-potsdam.de/. The availability of such sets allowed us performing detailed evolutionary studies at different levels, from a single family to all TF families in different organisms in a comparative genomics context. Notably, we uncovered preferential expansions in different lineages, paving the way to discover the specific biological roles of these proteins under different conditions.
For the basic leucine zipper (bZIP) family of TFs we were able to infer that in the most recent common ancestor (MRCA) of all green plants there were at least four bZIP genes functionally involved in oxidative stress and unfolded protein responses that are bZIP-mediated processes in all eukaryotes, but also in light-dependent regulations. The four founder genes amplified and diverged significantly, generating traits that benefited the colonization of new environments.
Currently, following the approach described above, up to 57 TF and 11 TR families can be identified, which are among the most numerous transcription regulatory families in plants. Three families of putative TFs predate the split between rhodophyta (red algae) and chlorophyta (green algae), i.e., G2-like, PLATZ, and RWPRK, and may have been of particular importance for the evolution of eukaryotic photosynthetic organisms. Nine additional families, i.e., ABI3/VP1, AP2-EREBP, ARR-B, C2C2-CO-like, C2C2-Dof, PBF-2-like/Whirly, Pseudo ARR-B, SBP, and WRKY, predate the split between green algae and streptophytes. The identification of putative complete list of TFs has also allowed the delineation of lineage-specific regulatory families. The families SBP, bHLH, SNF2, MADS, WRKY, HMG, AP2-EREBP and FHA significantly differ in size between algae and land plants. The SBP family of TFs is significantly larger in C. reinhardtii, compared to land plants, and appears to have been lost in the prasinophyte O. tauri. The families bHLH, SNF2, MADS, WRKY, HMG, AP2-EREBP and FHA preferentially expanded with the colonisation of land, and might have played an important role in this great moment in evolution. Later, after the split of bryophytes and tracheophytes, the families MADS, AP2-EREBP, NAC, AUX/IAA, PHD and HRT have significantly larger numbers in the lineage leading to seed plants. We identified 23 families that are restricted to land plants and that might have played an important role in the colonization of this new habitat.
Based on the list of TFs in different species we have started to develop high-throughput experimental platforms (in rice and C. reinhardtii) to monitor gene expression changes of TF genes under different genetic, developmental or environmental conditions. In this work we present the monitoring of Arabidopsis thaliana TFs during the onset of senescence, a process that leads to cell and tissue disintegration in order to redistribute nutrients (e.g. nitrogen) from leaves to reproductive organs. We show that the expression of 185 TF genes changes when leaves develop from half to fully expanded leaves and finally enter partial senescence. 76% of these TFs are down-regulated during senescence, the remaining are up-regulated.
The identification of TFs in plants in a comparative genomics setup has proven fruitful for the understanding of evolutionary processes and contributes to the elucidation of complex developmental programs. / Organismen weisen einen komplexen Steuerungsmechanismus auf, bei dem die Aktivität eines Gens räumlich und zeitlich reguliert wird. Eine Möglichkeit der Kontrolle der Genaktivität ist Regulation der Initiation der Transkription. Eine Voraussetzung für die Transkriptionsinitiation ist die Zusammenlagerung verschiedener Komponenten: eine allgemeine Maschinerie, die für alle exprimierten Gene gleich ist und eine spezifische Maschinerie, die sich von Gen zu Gen unterscheidet und die für die korrekte Genexpression in Abhängigkeit der Entwicklung und von Umweltsignalen verantwortlich ist. Diese spezifische Maschinerie besteht aus Transkriptionsfaktoren (TFs), welche in evolutionär verwandte Genefamilien eingeteilt werden können, die charakteristische Proteindomänen aufweisen.
In dieser Arbeit habe ich die Proteindomänen genutzt, um Regeln aufzustellen, die die Identifizierung und Klassifizierung von TFs erlauben. Solche Regeln wurden als Graphen modelliert, in denen die Familien und Proteindomänen als Knoten repräsentiert wurden. Verbindungen zwischen den Knoten bedeuten, dass eine Proteindomäne in einem Protein entweder vorhanden sein sollte oder nicht vorhanden sein darf, damit das Protein einer TF-Familie zugeordnet wird. Mit Hilfe dieses Ansatzes wurden vermutlich vollständige Datensätze von TFs in Pflanzenspezies generiert, deren Genom komplett sequenziert wurde: C. merolae, C. reinhardtii, O. tauri, P. patens, A. thaliana, P. trichocarpa and O. sativa. Diese kompletten TF-Sätze sowie weitergehende Informationen und Literaturhinweise wurden unter der Internetadresse http://plntfdb.bio.uni-potsdam.de/ öffentlich zugänglich gemacht. Die Datensätze erlaubten es, detailliertere evolutionäre Studien mit unterschiedlichen Schwerpunkten durchzuführen. Diese reichten von der Analyse einzelner Familien bis hin zum genomweiten Vergleich aller TF-Familien in verschiedenen Organismen. Als Resultat besonders erwähnenswert ist, dass bevorzugt einige bestimmte TF-Familien in verschiedenen Spezies expandierten. Diese Studien ebnen den Weg, um die spezifische biologische Rolle dieser Proteine unter verschiedenen Bedingungen zu ergründen.
Für die wichtige TF-Familie bZIP konnte gezeigt werden, dass der letzte gemeinsame Vorfahr aller Grünpflanzen mindestens vier bZIP Gene hatte, die funktionell in die Antwort auf oxidativen Stress eingebunden waren. Aus den vier Gründergene entstand durch Genverdopplung und –differenzierung eine große Familie, die Eigenschaften hervorbrachte, die die Besiedelung neuer Lebensräume ermöglichten.
Mit Hilfe des oben beschriebenen Ansatzes können derzeit aus der Vielzahl der Transkriptionsregulatorfamilien in Pflanzen bis zu 57 TF und 11 TR Familien identifiziert werden. Drei Familien mutmaßlicher TFs markieren die Trennung zwischen Rhodophyta (Rotalgen) und Chlorophyta (Grünalgen): G2-like, PLATZ und RWPRK. Diese könnten eine besondere Rolle bei der Evolution eukaryotischer photosynthetisch aktiver Organismen gespielt haben. Neun zusätzliche Familien (ABI3/VP1, AP2-EREBP, ARR-B, C2C2-CO-like, C2C2-Dof, PBF-2-like/Whirly, Pseudo ARR-B, SBP und WRKY) kennzeichnen die Trennung zwischen Grünalgen und Streptophyten. Die Identifizierung putativer kompletter Listen an TFs erlaubte auch die Identifizierung abtammungsspezifischer regulatorischer Familien. Die Familien SBP, bHLH, SNF2, MADS, WRKY, HMG, AP2-EREBP und FHA unterscheiden sich signifikant in ihrer Größe zwischen Algen und Landpflanzen. Die SBP Familie ist in C. reinhardtii signifikant größer als in Landpflanzen. In der Parasinophyte O. tauri scheint diese Familie verloren gegangen zu sein. Die Familien bHLH, SNF2, MADS, WRKY, HMG, AP2-EREBP und FHA expandierten präferenziell mit der Kolonialisation an Land. Sie könnten eine wichte Rolle während dieses einschneidenden Ereignisses der Evolution gespielt haben. Später, nach der Trennung von Bryophyten und Tracheophyten sind die Familien MADS, AP2-EREBP, NAC, AUX/IAA, PHD und HRT stärker in den Linien, die zu Samenpflanzen führten, gewachsen. 23 TF-Familien wurden identifiziert, die es nur in Landpflanzen gibt. Sie könnten eine besondere Rolle bei der Besiedelung des neuen Lebensraum gespielt haben.
Aufbauend auf die Transkriptionsfaktordatensätze, die in dieser Arbeit erstellt wurden, wurde mittlerweile damit begonnen, experimentelle Hochdurchsatz-Plattformen zu entwickeln (für Reis und für C. reinhardtii), um Änderungen in der Genaktivität der TF-Gene unter verschiedenen genetischen, Entwicklungs- oder Umweltbedingungen zu untersuchen. In dieser Arbeit wird die Analyse von TFs aus A. thaliana im Verlauf der Seneszenz vorgestellt. Seneszenz ist ein Prozess, der zur Zell- und Gewebeauflösung führt, um Nährstoffe aus den Blättern für den Transport in reproduktive Organe freizusetzen. Es wird gezeigt, dass sich die Expression von 187 TF Gene verändert, wenn sich die Blätter voll entfalten und schließlich teilweise in den Prozess der Seneszenz eintreten. 76% der TFs waren runterreguliert, die übrigen waren hochreguliert.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:2700
Date January 2008
CreatorsRiaño-Pachón, Diego Mauricio
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Biochemie und Biologie
Source SetsPotsdam University
LanguageEnglish
Detected LanguageEnglish
TypeText.Thesis.Doctoral
Formatapplication/pdf
Rightshttp://opus.kobv.de/ubp/doku/urheberrecht.php

Page generated in 0.0022 seconds