Return to search

Investigation of bond of deformed bars in plain and steel-fiber-reinforced concrete under reversed cyclic loading

The influence of reversed low cyclic loading on the bond behaviour of deformed bars in plain as well as steel-fiber-reinforced concrete has been studied experimentally and is discussed in this thesis.
In total, ten specimens consisting of two plain concrete and eight steel-fiber reinforced specimens were tested to failure. The variables were the mix proportions, the size and shape of the steel fibers and the pattern of loading. The results indicate that the most important factor affecting bond or stress transfer is the peak stress reached in the previous cycle. It was observed that steel-fiber-reinforced concrete exhibits higher bond strength, improved stiffness and less bond-deterioration under reversed cyclic loading than plain concrete. It was also found that steel fibers make a definite contribution
to crack control and better serviceability. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/22248
Date January 1980
CreatorsPanda, A. K.
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0019 seconds