The updating process, which consists of building mental models and adapting them to the changes occurring in the environment, is impaired in neglect patients. A simple rock-paper-scissors experiment was conducted in our lab to examine updating impairments in neglect patients. The results of this experiment demonstrate a significant difference between the performance of healthy and brain damaged participants. While healthy controls did not show any difficulty learning the computer’s strategy, right brain damaged patients failed to learn the computer’s strategy. A computational modeling approach is employed to help us better understand the reason behind this difference and thus learn more about the updating process in healthy people and its impairment in right brain damaged patients. Broadly, we hope to learn more about the nature of the updating process, in general. Also the hope is that knowing what must be changed in the model to “brain-damage” it can shed light on the updating deficit in right brain damaged patients. To do so I adapted a pattern detection method named “ELPH” to a reinforcement-learning human decision making model called “RELPH”. This model is capable of capturing the behavior of both healthy and right brain damaged participants in our task according to our defined measures. Indeed, this thesis is an effort to discuss the possible differences among these groups employing this computational model.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OWTU.10012/7883 |
Date | January 2013 |
Creators | Mohammadi Sepahvand, Nazanin |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Page generated in 0.0018 seconds