Return to search

Learning Resource-Aware Communication and Control for Multiagent Systems

Networked control systems, commonly employed in domains such as space exploration and robotics utilize network communication for efficient and coordinated control among distributed components. In these scenarios, effectively managing communication to prevent network overload poses a critical challenge. Previous research has explored the use of reinforcement learning methods combined with event-triggered control to autonomously have agents learn efficient policies for control and communication. Nevertheless, these approaches have encountered limitations in terms of performance and scalability when applied in multiagent scenarios. This thesis examines the underlying causes of these challenges and propose potential solutions. With the findings suggesting that training agents in a decentralized manner, coupled with modeling of the missing communication, can improve agent performance. This allows the agents to achieve performance levels comparable to those of agents trained with full communication, while reducing unnecessary communication

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-504563
Date January 2023
CreatorsPagliaro, Filip
PublisherUppsala universitet, Avdelningen för systemteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC IT, 1401-5749 ; 23017

Page generated in 0.0018 seconds