京都大学 / 新制・課程博士 / 博士(情報学) / 甲第24856号 / 情博第838号 / 新制||情||140(附属図書館) / 京都大学大学院情報学研究科知能情報学専攻 / (主査)教授 鹿島, 久嗣, 教授 河原, 達也, 教授 森本, 淳 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
Identifer | oai:union.ndltd.org:kyoto-u.ac.jp/oai:repository.kulib.kyoto-u.ac.jp:2433/284789 |
Date | 24 July 2023 |
Creators | Zhang, Guoxi |
Contributors | 张, 国熙, チョウ, コクキ |
Publisher | Kyoto University, 京都大学 |
Source Sets | Kyoto University |
Language | English |
Detected Language | English |
Type | doctoral thesis, Thesis or Dissertation |
Rights | 3章は1及び2に基づく。4章は3に基づく。5章は4及び5に基づく。1. G. Zhang and H. Kashima. Batch reinforcement learning from crowds. In Machine Learning and Knowledge Discovery in Databases, pages 38–51. Springer Cham, 2023. https://doi.org/10.1007/978-3-031-26412-2_3 2. G. Zhang, J. Li, and H. Kashima. Improving pairwise rank aggregation via querying for rank difference. In Proceedings of the Ninth IEEE International Conference on Data Science and Advanced Analytics, IEEE, 2022. https://doi.org/10.1109/DSAA54385.2022.10032454 3. G. Zhang and H. Kashima. Learning state importance for preference-based reinforcement learning. Machine Learning, 2023. https://doi.org/10.1007/s10994-022-06295-5 4. G. Zhang and H. Kashima. Behavior estimation from multi-source data for offline reinforcement learning. In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence. AAAI Press, 2023. 5. G. Zhang, X. Yao, and X. Xiao. On modeling long-term user engagement from stochastic feedback. In Companion Proceedings of the ACM Web Conference 2023. Association for Computing Machinery, 2023. https://doi.org/10.1145/3543873.3587626 |
Page generated in 0.0119 seconds