Translation initiation is a multi-step process culminating in formation of the elongation- competent 80S ribosome. It requires accurate assembly of small and large ribosomal subunits, mRNA, initiation Met-tRNAi Met and at least 12 eukaryotic initiation factors (eIFs). This phase of protein synthesis is also one of the key points of regulation of gene expression. One of the main aims of our laboratory is a complex characterization of the multiprotein eIF3 complex that has been implicated in most of the steps of translation initiation. For example, we revealed and described its novel role in translation reinitiation (REI), a gene-specific translational control mechanism that among others governs expression of an important yeast transcriptional activator GCN4. Here I present a detailed characterization of the multi-functional N-terminal domain of Tif32 (subunit eIF3a). We demonstrated that the Tif32-NTD functionally interacts with the 5' sequences of short upstream ORF (uORF1) in the GCN4 mRNA leader and thus allows efficient reinitiation downstream of this critical reinitiation-permissive uORF. Four REI- promoting elements (RPEs) were identified in the 5' sequences of uORF1, two of which were shown to work in the Tif32-NTD-dependent manner. The structure of the 5' sequences was determined...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:335644 |
Date | January 2014 |
Creators | Pondělíčková, Vanda |
Contributors | Valášek, Leoš, Hašek, Jiří, Vopálenský, Václav |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0026 seconds