Return to search

Avaliação de imagens do sensor ASTER para caracterização e mapeamento de rejeitos de garimpo de ametista / Validation of aster images for characterization and mapping of ametist mining residues

Este trabalho buscou avaliar os aspectos relacionados à potencialidade das imagens do sensor Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) para a caracterização e mapeamento de rejeitos de garimpos de ametistas na região do município de Ametista do Sul-RS, Brasil. Essa região possui a maior produção de ametistas do mundo. Foram utilizados classificadores de Distância Mínima Euclidiana, Máxima Verossimilhança e a técnica SAM (Spectral Angle Mapper). Entre os três algoritmos de classificação empregados, o melhor desempenho foi observado na técnica SAM, a qual obteve o menor erro e a melhor distinção do alvo em estudo. O principal erro encontrado para os classificadores foi a confusão gerada entre as classes “sombra” e “rejeitos de garimpos”. Com a utilização da técnica SAM, essa confusão foi reduzida consideravelmente, pois a mesma utilizou a curva espectral do rejeito como referência na classificação, enquanto os classificadores multiespectrais utilizaram grupos de pixels representativos do basalto, que continham mistura espectral de outras classes, como sombra e vegetação. Os resultados sugerem que, em ambientes tropicais similares aos da área de estudo, com predomínio de vegetação densa, os dados ASTER podem ser eficazes para a caracterização dos rejeitos de garimpos. / The objective of this work was to evaluate the potential of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images, for discrimination and mapping of ametist mining residues/basalt in the Ametista do Sul region, Rio Grande do Sul State, Brazil. This region provides the most part of ametist production of the World. The multispectral algorithms Minimun Euclidian Distance and Maximum Likelihood and the hyperspectral technique SAM (Spectral Angle Mapper) were used in this work. The SAM technique showed better results than multispectral techniques. The main error found by the multispectral algorithms was the mixing/confusion between “shadow” and “mining residues” classes due to the spectral similarity between them. With the SAM technique the confusion decreased because it employed the residues spectral curve as a reference, while the multispectral techniques employed pixels groups that could have spectral mixture with other targets. The results showed that in tropical terrains as the study area, ASTER data can be efficacious for the characterization of mining residues.

Identiferoai:union.ndltd.org:IBICT/oai:lume.ufrgs.br:10183/12540
Date January 2006
CreatorsMarkoski, Paulo Roberto
ContributorsRolim, Silvia Beatriz Alves
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0014 seconds