Return to search

Redes neurais em análise de sobrevivência: Uma aplicação na área de relacionamento com clientes / Redes neurais em análise de sobrevivência: Uma aplicação na área de relacionamento com clientes

A medida que as economias modernas tornam-se predominantemente baseadas na prestação de serviços, as companhias aumentam seu valor na criação e na sustentabilidade do relacionamento a longo prazo com seus clientes. O \"Customer Lifetime Value (LTV)\", que é uma medida de potencial de geração de lucro, ou valor de um cliente, vem sendo considerado um ponto fundamental para o gerenciamento da relação com os clientes. O principal desafio em prever o LTV é a produção de estimativas para o tempo de duração do contrato de um cliente com um dado provedor de serviços, baseado nas informações contidas no banco de dados da companhia. Neste trabalho, apresentaremos uma alternativa aos modelos estatísticos clássicos, utilizando um modelo de redes neurais para a previsão da taxa de cancelamento a partir do banco de dados de uma empresa de TV por assinatura. / A medida que as economias modernas tornam-se predominantemente baseadas na prestação de serviços, as companhias aumentam seu valor na criação e na sustentabilidade do relacionamento a longo prazo com seus clientes. O \"Customer Lifetime Value (LTV)\", que é uma medida de potencial de geração de lucro, ou valor de um cliente, vem sendo considerado um ponto fundamental para o gerenciamento da relação com os clientes. O principal desafio em prever o LTV é a produção de estimativas para o tempo de duração do contrato de um cliente com um dado provedor de serviços, baseado nas informações contidas no banco de dados da companhia. Neste trabalho, apresentaremos uma alternativa aos modelos estatísticos clássicos, utilizando um modelo de redes neurais para a previsão da taxa de cancelamento a partir do banco de dados de uma empresa de TV por assinatura.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-26082007-225003
Date04 June 2007
CreatorsOgava, Marcelo Hiroshi
ContributorsLima, Antonio Carlos Pedroso de
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0022 seconds