Return to search

Méthodes d’évaluation du comportement des limiteurs de courant de court-circuit supraconducteurs résistifs intégrés dans des simulateurs de réseaux électriques / Methods for evaluating the behavior of resistive superconducting fault current limiters integrated in power system simulators

Les limiteurs de courants de court-circuit supraconducteurs sont des appareillages à fort potentiel pour les réseaux électriques. En effet, ils offrent une limitation efficace dès les premiers instants du court-circuit. On peut qualifier la limitation de "naturelle", c’est-à-dire qu’elle est intrinsèquement liée aux caractéristiques du matériau et ne nécessite pas de commande particulière. Afin de faciliter la conception et l’intégration des limiteurs de courant de court-circuit supraconducteurs résistifs (rSFCL) destinés aux réseaux électriques, il est nécessaire de disposer de modèles de simulation précis. Ces derniers doivent prendre en compte et simuler correctement (et le plus précisément possible) les phénomènes électriques et thermiques du rSFCL en présence de surintensités de courant, qu’il s’agisse d’un court-circuit franc ou d’un phénomène temporaire de plus faible amplitude. Il est difficile d’envisager la planification de l’intégration d’un rSFCL sans passer par des outils numériques qui permettent la simulation d’un tel dispositif dans un réseau électrique en régime transitoire. Il est alors plus facile d’appréhender et de prédire le comportement transitoire du limiteur dans des conditions de stress réalistes, qui peuvent comprendre une grande variété de surintensités, tant en durée qu’en amplitude. Néanmoins, les rSFCL sont des dispositifs fortement non-linéaires caractérisés par un couplage électrique et thermique très fort. L’implémentation d’un tel modèle dans un logiciel de simulation de type “circuits électriques” en régime transitoire présente un certain défi. Bien que des modèles de rSFCL existent déjà, des améliorations doivent être apportées pour prendre en compte i) l’ensemble des phénomènes physiques liés à la limitation (thermiques et électriques), ii) les propriétés géométriques des rubans supraconducteurs utilisés et iii) la possibilité de réaliser des études globales (impact du limiteur sur le réseau) et iv) l’influence de l’architecture du ruban en présence de phénomènes locaux (points chauds). Cette thèse se concentre donc sur le développement d’un modèle de rSFCL basé sur des rubans supraconducteurs de deuxième génération. Ce modèle est développé dans le logiciel EMTP-RV, qui est un outil utilisé par un grand nombre de compagnies d’électricité dans le monde. Le modèle proposé dans cette thèse repose sur une analogie qui fait le lien entre les phénomènes électriques et thermiques, et qui permet une modélisation entièrement basée sur des éléments de circuits électriques. Le modèle permet de prendre également en compte les propriétés non linéaires des matériaux, tant au niveau électrique qu’au niveau thermique, avec l’utilisation de dipôles non-linéaires. Le modèle a été développé pour offrir un niveau de généricité intéressant pour la modélisation des rubans supraconducteurs. Il permet un fonctionnement avec une excitation AC ou DC en tension ou en courant et tient compte de la non-uniformité de courant critique, qui est typiquement observée dans la longueur des rubans disponibles commercialement. Il est également possible de représenter des variantes d’architectures (géométries et matériaux), avec une souplesse de modélisation qui est basée sur un assemblage de blocs “élémentaires” dont les dimensions peuvent être différentes. Cela permet alors d’évaluer, dans une même simulation, l’architecture du limiteur à une échelle submillimétrique (points chauds) et à une échelle “systémique”, tel que le comportement de plusieurs centaines de mètres de ruban. Des comparaisons ont permis de vérifier que le modèle circuit avait un comportement similaire à son équivalent en éléments finis, seulement si la taille des éléments électrothermiques de base (dans EMTP-RV) est adéquate. Le modèle équivalent circuit permet de réaliser des simulations de différentes architectures de rubans supraconducteurs, avec ou sans résistance d’interface, entre les couches tampons et la couche de (RE)BCO par exemple [...] / Superconducting fault current limiters (SFCL) are a promising technology for power systems, i.e. they provide efficient current limitation from the very beginning of the fault without requiring any control system. In fact, the current limiting characteristics are directly connected to the physical properties of superconducting materials. There is a need for accurate models to help designing resistive-type SFCLs (rSFCL) and planning their integration into electrical networks. Such models have to take into account the physics involved for simulating (as accurately as possible) the electrical and thermal behaviours for a wide range of fault conditions, i.e. high and low short-circuit currents that can be of various durations. It is difficult to see how the planning and integration of SFCLs can be realized without using numerical tools, especially tools that allow realizing power system transient simulations, such as EMTP-RV. In fact, such software packages support engineers in predicting the behaviour of SFCLs in realistic network conditions, which may comprise a wide variety of overcurrent or fault situations. However, rSFCLs exhibit highly non-linear behaviours with a strong coupling between thermal and electrical phenomena. The implementation of such a model in power systems simulation tools is therefore challenging. Although some models have been already developed over the years, improvements are needed to take into account i) all the phenomena linked to the current limitation (electrical and thermal), ii) geometric properties of superconducting tapes that are used in rSFCLs, and iii) the possibility to perform simulations at the system level, and iv) the influence of the tape architecture in relationship to local phenomena (hot spots). This thesis hence focuses on the development of a models for resistive-type SFCLs based on second generation high temperature superconducting coated conductors (2G HTS CCs), i.e. (RE)BCO tapes. The models are implemented in EMTP-RV, a tool that is used by many utilities around the world. However, the modeling technique can be adapted to other simulation tools as well. The model proposed in this thesis is based on an electro-thermal analogy, which allows modeling thermal effects with non-linear electrical circuit elements such as resistors and capacitors. The model has been developed with the aim of providing flexibility. Hence, it can be used with an AC or DC excitation, and can also take into account non-uniformity in critical critical current density typically observed along length of the conductors (i.e. tapes). It also allows modeling virtually any tape architecture using modular and flexible electrical and thermal basic building blocks that can be different in size. This in turn also allows modeling SFCLs with different level of discretization, i.e. from hot spot modeling with local heat transfer to several meters of (RE)BCO tape. It therefore becomes possible to analyze in the same simulation phenomena happening at the sub-millimetric scale, such as hot-spot phenomena, and at the system-scale, such as the impact on the network of several hundred meters of superconducting tape. In order to validate the EMTP-RV circuit model, comparisons with results obtained with finite elements have been carried out. A similar behavior could be observed, as long as the discretization size of the electro-thermal elements were appropriate. The EMTP-RV circuit model allows performing optimizations of the tape architecture for various thicknesses of stabilizer, in presence or not of an interfacial resistance layer, e.g. between the superconductor and the substrate. While the circuit model was developed to allow representing heat transfer and current distribution in 3D, simulations are still limited to 2D cases because the size of the nodal matrix is otherwise exceeded in EMTP-RV. Simulation results also show that neglecting heat transfer along the thickness of the tape can be risky, [...]

Identiferoai:union.ndltd.org:theses.fr/2017LORR0058
Date25 April 2017
CreatorsBonnard, Charles-Henri
ContributorsUniversité de Lorraine, Ecole polytechnique (Montréal, Canada), Douine, Bruno, Sirois, Frédéric, Didier, Gaëtan
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0031 seconds