Return to search

Segmentation 3D de tumeurs et de structures internes du cerveau en IRM

Le sujet principal de cette thèse est la segmentation 3D de tumeurs du cerveau et de leurs différentes composantes (oedème et nécrose), ainsi que de structures internes du cerveau en IRM. Pour la segmentation de tumeurs nous proposons un cadre général qui est une combinaison des paradigmes fondés sur les régions et les contours. Dans ce cadre, nous segmentons d'abord le cerveau en utilisant une méthode adaptée aux cas pathologiques et extrayons des informations globales sur la tumeur par analyse de symétrie. La deuxième étape segmente la tumeur et ses composantes. Pour cela, nous proposons une méthode nouvelle et originale qui combine l'information de régions et de contours en deux phases. Pour la première, l'initialisation, nous présentons deux nouvelles méthodes. La première est une nouvelle méthode de classification floue qui exploite à la fois l'information des voxels et leurs voisinages (inspirés des champs Markov (MRF)), l'appartenance et la typicalité. La seconde se fonde sur l'analyse de la symétrie. La segmentation initiale de la tumeur est raffinée dans la deuxième phase par un modèle déformable contraint par des relations spatiales. Les relations spatiales sont obtenues en utilisant la segmentation initiale et les tissus environnant la tumeur. La méthode proposée peut être employée pour une grande classe de tumeurs dans n'importe quelle modalité en IRM. Pour segmenter une tumeur et ses composantes automatiquement, le cadre proposé a besoin seulement d'une image CE-T1w (con- trast enhanced T1-weighted) et d'une image FLAIR. Dans le cas d'une image CE-T1w seulement, l'interaction de l'utilisateur peut être nécessaire. Nous avons évalué cette méthode sur une base de données de 20 images CE-T1w et 10 images FLAIR avec différents types de tumeurs. Un autre but de cette thèse est la segmentation de structures internes du cerveau en présence d'une tumeur. Pour cela, une connaissance a priori sur l'anatomie et l'organisation spatiale des structures est fournie par une ontologie. Pour segmenter chaque structure, nous exploitons ses relations spatiales par rapport à d'autres structures, selon la connaissance a priori. Nous choisissons alors les relations spatiales qui sont valables en fonction de la tumeur segmentée. Ces relations spatiales sont alors modélisées dans un cadre flou proposé par notre groupe. Comme pour la tumeur, la procédure de segmentation de chaque structure comporte deux étapes. Dans la première étape nous recherchons la segmentation initiale de la structure dans le cerveau globalement segmenté. Le processus de recherche est fait dans la région d'intérêt fournie par la fusion des relations spatiales. Pour segmenter globalement les structures du cerveau nous employons deux méthodes. La première est la classification floue propos ée et la seconde repose sur les ensembles de niveaux multi-phases. Pour raffiner la segmentation initiale, nous employons un modèle déformable qui est contraint par les relations spatiales de la structure. Cette méthode a été également évaluée sur 10 images CE-T1w pour segmenter les ventricules, les noyaux caudés et les thalami.

Identiferoai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00003662
Date07 February 2008
CreatorsKhotanlou, Hassan
PublisherTélécom ParisTech
Source SetsCCSD theses-EN-ligne, France
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0017 seconds