Return to search

Accurate numerical relativity simulations of non-vacuumspace-times in two dimensions and applications to critical collapse

This Thesis puts its focus on the physics of neutron stars and its description with methods of numerical relativity. In the first step, a new numerical framework the Whisky2D code will be developed, which solves the relativistic equations of hydrodynamics in axisymmetry. Therefore we consider an improved formulation of the conserved form of these equations. The second part will use the new code to investigate the critical behaviour of two colliding neutron stars. Considering the analogy to phase transitions in statistical physics, we will investigate the evolution of the entropy of the neutron stars during the whole process. A better understanding of the evolution of thermodynamical quantities, like the entropy in critical process, should provide deeper understanding of thermodynamics in relativity.
More specifically, we have written the Whisky2D code, which solves the general-relativistic hydrodynamics equations in a flux-conservative form and in cylindrical coordinates. This of course brings in 1/r singular terms, where r is the radial cylindrical coordinate, which must be dealt with appropriately. In the above-referenced works, the flux operator is expanded and the 1/r terms, not containing derivatives, are moved to the right-hand-side of the equation (the source term), so that the left hand side assumes a form identical to the one of the three-dimensional (3D) Cartesian formulation. We call this the standard formulation. Another possibility is not to split the flux operator and to redefine the conserved variables, via a multiplication by r. We call this the new formulation. The new equations are solved with the same methods as in the Cartesian case. From a mathematical point of view, one would not expect differences between the two ways of writing the differential
operator, but, of course, a difference is present at the numerical level. Our tests show that the new formulation yields results with a global truncation error which is one or more orders of magnitude smaller than those of alternative and commonly used formulations.

The second part of the Thesis uses the new code for investigations of critical phenomena in general relativity. In particular, we consider the head-on-collision of two neutron stars in a region of the parameter space where two final states a new stable neutron star or a black hole, lay close to
each other. In 1993, Choptuik considered one-parameter families of solutions, S[P], of the Einstein-Klein-Gordon equations for a massless scalar field in spherical symmetry, such that for every P > P⋆, S[P] contains a black hole and for every P < P⋆, S[P] is a solution not containing singularities. He studied numerically the behavior of S[P] as P → P⋆ and found that the critical solution, S[P⋆], is universal, in the sense that it is approached by all nearly-critical solutions regardless of the particular family of initial data considered.
All these phenomena have the common property that, as P approaches P⋆, S[P] approaches a universal solution S[P⋆] and that all the physical quantities of S[P] depend only on |P − P⋆|. The first study of critical phenomena concerning the head-on collision of NSs was carried out by Jin and Suen in 2007. In particular, they considered a series of families of equal-mass NSs, modeled with an ideal-gas EOS, boosted towards each other and varied the mass of the stars, their separation, velocity and the polytropic index in the EOS. In this way they could observe a critical phenomenon of type I near the threshold of black-hole formation, with the putative solution being a nonlinearly oscillating star. In a successive work, they performed similar simulations but considering the head-on collision of Gaussian distributions of matter. Also in this case they found the appearance of type-I critical behaviour, but also performed a perturbative analysis of the initial distributions of matter and of the merged object. Because of the considerable difference found in the eigenfrequencies in the two cases, they concluded that the critical solution does not represent a system near equilibrium and in particular not a perturbed Tolmann-Oppenheimer-Volkoff (TOV) solution.

In this Thesis we study the dynamics of the head-on collision of two equal-mass NSs using a setup which is as similar as possible to the one considered above. While we confirm that the merged object exhibits a type-I critical behaviour, we also argue against the conclusion that the critical solution cannot be described in terms of equilibrium solution. Indeed, we show that, in analogy with what is found in, the critical solution is effectively a perturbed unstable solution of the TOV equations. Our analysis also considers fine-structure of the scaling relation of type-I critical phenomena and we show that it exhibits oscillations in a similar way to the one studied in the context of scalar-field critical collapse. / Diese Arbeit legt seinen Schwerpunkt auf die Physik von Neutronensternen und deren Beschreibung mit Methoden der numerischen Relativitätstheorie. Im ersten Schritt wird eine neue numerische Umgebung, der Whisky2D Code entwickelt, dieser löst die relativistischen Gleichungen der Hydrodynamik in Axialymmetrie. Hierzu betrachten wir eine verbesserte Formulierung der sog. "flux conserved formulation" der Gleichungen.
Im zweiten Teil wird der neue Code verwendet / um das kritische Verhalten zweier kollidierenden Neutronensternen zu untersuchen. In Anbetracht der Analogie, um Übergänge in der statistischen Physik Phase werden wir die Entwicklung der Entropie der Neutronensterne während des gesamten Prozesses betrachten. Ein besseres Verständnis der Evolution von thermodynamischen Größen, wie der Entropie in kritischer Prozess, sollte zu einem tieferen Verständnis der relativistischen Thermodynamik führen.
Der Whisky2D Code, zur Lösung Gleichungen relativistischer Hydrodynamik wurde in einer „flux conserved form“ und in zylindrischen Koordinaten geschrieben. Hierdurch entstehen 1 / r singuläre Terme, wobei r der ist, die entsprechend behandelt werden müssen. In früheren Arbeiten, wird der Operator expandiert und die 1 / r spezifisch Therme auf die rechte Seite geschrieben, so dass die linke Seite eine Form annimmt, die identisch ist mit der kartesischen Formulierung. Wir nennen dies die Standard-Formulierung. Eine andere Möglichkeit ist, die Terme nicht zu expandieren, den und den 1/r Term in die Gleichung hinein zu ziehen. Wir nennen dies die Neue-Formulierung. Die neuen Gleichungen werden mit den gleichen Verfahren wie im kartesischen Fall gelöst. Aus mathematischer Sicht ist keine Unterschiede zwischen den beiden Formulierungen zu erwarten, erst die numerische Sicht zeigt die Unterschiede auf. Versuche zeigen, dass die Neue-Formulierung numerische Fehler um mehrere Größenordnungen reduziert.

Der zweite Teil der Dissertation verwendet den neuen Code für die Untersuchung kritischer Phänomene in der allgemeinen Relativitätstheorie. Insbesondere betrachten wir die Kopf-auf-Kollision zweier Neutronensterne in einem Bereich des Parameter Raums, deren zwei mögliche Endzustände entweder einen neuen stabilen Neutronenstern oder ein Schwarzes Loch darstellen.

Im Jahr 1993, betrachtete Choptuik Ein-Parameter-Familien von Lösungen, S [P], der Einstein-Klein-Gordon-Gleichung für ein masseloses Skalarfeld in sphärischer Symmetrie, so dass für jedes P> P ⋆, S[P] ein Schwarzes Loch enthalten ist und jedes P <P ⋆, S [P] eine Lösung ohne eine Singularität. Er studierte das numerisch Verhalten von S [P] als P → P ⋆ und stellte fest, dass die kritische Lösung, S[P ⋆], universell in dem Sinne ist, dass die Lösung nahe des kritischen Wertes unabhängig von den Anfangsdaten ist.
Alle diese Phänomene haben die gemeinsame Eigenschaft, dass sobald sich P P ⋆ annähert, auch S[P] S [P ⋆] annähert und dass alle physikalischen Größen von S [P] nur noch von | P - P ⋆ | abhängen. Die erste Studie der kritischen Phänomene über den Frontalzusammenstoß von zwei Neutronensternen wurde von Jin und Suen im Jahr 2007 durchgeführt. Insbesondere untersuchten sie eine Reihe von Anfangsdaten gleicher Neutronensternmasse, mit einer idealen EOS, die aufeinander zu beschleunigt werden. Variiert wurden die Massen der Sterne, ihr Abstand, die Geschwindigkeit und die polytropen Index der EOS. Auf diese Weise konnten sie kritische Phänomen des Typ I beobachten. In weiteren Versuchen, führten sie ähnliche Simulationen frontal kollidierender Materie in Gauß Verteilungen durch. Auch in diesem Fall fanden sie Typ-I-kritisches Verhalten. Zudem führten sie eine störungstheoretische Analyse der Anfangsobjekte als auch der stabilen Endobjekte durch. Wegen der beträchtlichen Unterschiede in den Eigenfrequenzen in beiden Fallen, schlossen sie daraus, dass die kritische Lösung keine linear-gestörten Tolmann-Oppenheimer-Volkoff (TOV) Sterne im Gleichgewicht darstellen.
In dieser Arbeit untersuchen wir die Dynamik der Frontalzusammenstoß zweier Neutronensterne gleicher Masse mit ähnlichem Setup wie oben besprochen. Während wir bestätigen, dass die erzeugten Objekte ebenfalls ein Typ-I-kritische Verhalten aufweisen, wiedersprechen wir der der Aussage, dass sich die kritische Lösung nicht als Gleichgewichtslösung dargestellt werden kann. In der Tat zeigen wir, dass die kritische Lösung als linear-gestörte instabile Lösung eines TOV-Sterns dargestellt werden kann. Unsere Analyse berücksichtigt auch die Feinstruktur der Skalenverhältnisse Typ-I-kritischer Phänomene und wir zeigen ebenfalle, dass hier Oszillationen auftreten, die bereits in ähnlichen Studien zum Kollaps kritischer Skalar-Feld gefunden wurden.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:5957
Date January 2011
CreatorsKellermann, Thorsten
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Physik und Astronomie, Extern. Extern
Source SetsPotsdam University
LanguageEnglish
Detected LanguageEnglish
TypeText.Thesis.Doctoral
Formatapplication/pdf
Rightshttp://opus.kobv.de/ubp/doku/urheberrecht.php

Page generated in 0.0033 seconds