L'intérêt majeur des travaux exposés dans cette thèse est d'explorer la chevelure des trous noirs dans des cadres plus généraux que celui de la Relativité Générale en tenant compte de la présence d'une constante cosmologique, de dimensions supplémentaires, de champs de matière exotiques ou de termes de courbure de rang plus élevé. Ces extensions de la Relativité Générale peuvent s'inscrire dans le cadre de la théorie des cordes. C'est en étudiant des extensions naturelles de la Relativité Générale que nous pouvons aussi mieux comprendre la théorie d'Einstein. Dans un premier temps, nous exposerons la théorie de la Relativité Générale avec notamment les principes sur lesquelles elle s'appuie et nous donnerons les éléments mathématiques dont nous avons besoin pour la suite. Puis, une première extension sera présentée avec l'introduction de dimensions supplémentaires et de champs de p-formes qui constituent la généralisation naturelle de l'interaction électromagnétique. Nous construirons dans ce cadre de nouvelles solutions statiques de trous noirs où les p-formes permettent de modeler la géométrie de l'horizon. Nous exposerons ensuite l'extension la plus générale de la théorie d'Einstein en dimension quelconque qui génère des équations du second ordre en la métrique : la théorie de Lovelock. Nous déterminerons dans ce contexte une large classe de solutions en dimension 6 pour laquelle la théorie se réduit à celle d'Einstein-Gauss-Bonnet avec toujours la présence de p-formes. Enfin, nous étudierons une généralisation de la Relativité Générale en dimension 4 dont la modification est induite par un champ scalaire couplé conformément à la gravitation. Nous exhiberons notamment une nouvelle solution de trou noir avec un horizon plat dans cette théorie en présence de champs axioniques. Pour clore cette thèse, l'aspect thermodynamique de ces théories gravitationnelles sera étudié ; ce qui permettra de déterminer la masse et les charges de ces nouvelles solutions et d'étudier des phénomènes de transitions de phase en présence d'un champ scalaire conforme.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00737357 |
Date | 24 September 2012 |
Creators | Bardoux, Yannis |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds