An invariant formalism is developed for a two-body system in a flat spacetime interacting by the exchange of particles of zero proper mass. A solution, to second order, of the equations of motion is obtained. The principle of equivalence is applied to study the motion of a system of particles in a uniform gravitational field. The equations of motion are then generalized to a Riemannian spacetime and the acceleration of non-spinning point-particles in a gravitational field is briefly discussed. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
Identifer | oai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/36482 |
Date | January 1967 |
Creators | Hamilton, John Dwayne |
Publisher | University of British Columbia |
Source Sets | University of British Columbia |
Language | English |
Detected Language | English |
Type | Text, Thesis/Dissertation |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
Page generated in 0.0012 seconds