O método de Kaczmarz é um algoritmo iterativo que soluciona sistemas lineares do tipo Ax = b através de projeções sobre hiperplanos bastante usado em aplicações que envolvem a Tomografia Computadorizada. Recentemente voltou a ser destaque após a publicação de uma versão aleatória apresentada por Strohmer e Vershynin em 2009 a qual foi provada possuir taxa de convergência esperada exponencial. Posteriormente, Eldar e Needell em 2011 sugeriram uma versão modificada do algoritmo de Strohmer e Vershynin, na qual a cada iteração é selecionada a projeção ótima a partir de um conjunto aleatório, utilizando para isto o lema de Johnson-Lindenstrauss. Nenhum dos artigos mencionados apresenta uma técnica para a escolha do parâmetro de relaxação, entretanto, a seleção apropriada deste parâmetro pode ter uma influência substancial na velocidade do método. Neste trabalho apresentamos uma metodologia para a escolha do parâmetro de relaxação, bem como implementações paralelas do algoritmo de Kaczmarz utilizando as ideias de Eldar e Needell. Nossa metodologia para seleção do parâmetro utiliza uma nova generalização dos resultados de Strohmer e Vershynin que agora leva em consideração o parâmetro λ de relaxação e, a partir daí, obtemos uma estimativa da taxa de convergência como função de λ. Escolhemos então, para uso no algoritmo, aquele que otimiza esta estimativa. A paralelização dos métodos foi realizada através da plataforma CUDA e se mostrou muito promissora, pois conseguimos, através dela, um ganho significativo na velocidade de convergência / The Kaczmarz method is an iterative algorithm for finding the solution of a system of linear equations Ax = b by projecting onto the hyperplanes widely used in applications involving Computerized Tomography. It has been recently highlighted after the publication of a random version presented by Strohmer and Vershynin in 2009 that yields probably exponential convergence in expectation. Thereafter, Eldar and Needell in 2011 suggested a modified version of Strohmer and Vershynin algorithm, which at each iteration selects the optimal projection from a random set making use of the Johnson-Lindenstrauss lemma. None of the mentioned articles presents a technique for choosing the relaxation parameter, however, the proper selection of this parameter can achieve a substantial gain on the speed of the method. In this project we present a methodology for finding the relaxation parameter, as well as parallel implementations of Kacmarzs Algorithm using the ideas of Eldar and Needell. Our methodology for parameter selection uses a new generalization on Strohmer and Vershynins results which now regards the relaxation parameter λ. Thenceforward, we obtain an estimate of the convergence rate as a function of λ. Then we use this estimate in the algorithm the optimizer of this estimate. The parallelization of the methods has been implemented through the CUDA platform and appears to be very promising, since it delivers substantial gain in the convergence speed
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-19092014-102033 |
Date | 16 May 2014 |
Creators | Estácio, Leonardo Bravo |
Contributors | Helou Neto, Elias Salomão |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.002 seconds