Return to search

Self-Organizing Neural Networks for Sequence Processing

This work investigates the self-organizing representation of temporal data in prototype-based neural networks. Extensions of the supervised learning vector quantization (LVQ) and the unsupervised self-organizing map (SOM) are considered in detail. The principle of Hebbian learning through prototypes yields compact data models that can be easily interpreted by similarity reasoning. In order to obtain a robust prototype dynamic, LVQ is extended by neighborhood cooperation between neurons to prevent a strong dependence on the initial prototype locations. Additionally, implementations of more general, adaptive metrics are studied with a particular focus on the built-in detection of data attributes involved for a given classifcation task. For unsupervised sequence processing, two modifcations of SOM are pursued: the SOM for structured data (SOMSD) realizing an efficient back-reference to the previous best matching neuron in a triangular low-dimensional neural lattice, and the merge SOM (MSOM) expressing the temporal context as a fractal combination of the previously most active neuron and its context. The first SOMSD extension tackles data dimension reduction and planar visualization, the second MSOM is designed for obtaining higher quantization accuracy. The supplied experiments underline the data modeling quality of the presented methods.

Identiferoai:union.ndltd.org:uni-osnabrueck.de/oai:repositorium.ub.uni-osnabrueck.de:urn:nbn:de:gbv:700-2005012711
Date27 January 2005
CreatorsStrickert, Marc
ContributorsProf. Dr. Barbara Hammer, Prof. Dr. Helge Ritter
Source SetsUniversität Osnabrück
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/zip, application/pdf
Rightshttp://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.002 seconds