Return to search

On Age-of-Information Aware Resource Allocation for Industrial Control-Communication-Codesign

Unter dem Überbegriff Industrie 4.0 wird in der industriellen Fertigung die zunehmende Digitalisierung und Vernetzung von industriellen Maschinen und Prozessen zusammengefasst. Die drahtlose, hoch-zuverlässige, niedrig-latente Kommunikation (engl. ultra-reliable low-latency communication, URLLC) – als Bestandteil von 5G gewährleistet höchste Dienstgüten, die mit industriellen drahtgebundenen Technologien vergleichbar sind und wird deshalb als Wegbereiter von Industrie 4.0 gesehen. Entgegen diesem Trend haben eine Reihe von Arbeiten im Forschungsbereich der vernetzten Regelungssysteme (engl. networked control systems, NCS) gezeigt, dass die hohen Dienstgüten von URLLC nicht notwendigerweise erforderlich sind, um eine hohe Regelgüte zu erzielen. Das Co-Design von Kommunikation und Regelung ermöglicht eine gemeinsame Optimierung von Regelgüte und Netzwerkparametern durch die Aufweichung der Grenze zwischen Netzwerk- und Applikationsschicht. Durch diese Verschränkung wird jedoch eine fundamentale (gemeinsame) Neuentwicklung von Regelungssystemen und Kommunikationsnetzen nötig, was ein Hindernis für die Verbreitung dieses Ansatzes darstellt. Stattdessen bedient sich diese Dissertation einem Co-Design-Ansatz, der beide Domänen weiterhin eindeutig voneinander abgrenzt, aber das Informationsalter (engl. age of information, AoI) als bedeutenden Schnittstellenparameter ausnutzt.
Diese Dissertation trägt dazu bei, die Echtzeitanwendungszuverlässigkeit als Folge der Überschreitung eines vorgegebenen Informationsalterschwellenwerts zu quantifizieren und fokussiert sich dabei auf den Paketverlust als Ursache. Anhand der Beispielanwendung eines fahrerlosen Transportsystems wird gezeigt, dass die zeitlich negative Korrelation von Paketfehlern, die in heutigen Systemen keine Rolle spielt, für Echtzeitanwendungen äußerst vorteilhaft ist. Mit der Annahme von schnellem Schwund als dominanter Fehlerursache auf der Luftschnittstelle werden durch zeitdiskrete Markovmodelle, die für die zwei Netzwerkarchitekturen Single-Hop und Dual-Hop präsentiert werden, Kommunikationsfehlerfolgen auf einen Applikationsfehler abgebildet. Diese Modellierung ermöglicht die analytische Ableitung von anwendungsbezogenen Zuverlässigkeitsmetriken wie die durschnittliche Dauer bis zu einem Fehler (engl. mean time to failure). Für Single-Hop-Netze wird das neuartige Ressourcenallokationsschema State-Aware Resource Allocation (SARA) entwickelt, das auf dem Informationsalter beruht und die Anwendungszuverlässigkeit im Vergleich zu statischer Multi-Konnektivität um Größenordnungen erhöht, während der Ressourcenverbrauch im Bereich von konventioneller Einzelkonnektivität bleibt.
Diese Zuverlässigkeit kann auch innerhalb eines Systems von Regelanwendungen, in welchem mehrere Agenten um eine begrenzte Anzahl Ressourcen konkurrieren, statistisch garantiert werden, wenn die Anzahl der verfügbaren Ressourcen pro Agent um ca. 10 % erhöht werden. Für das Dual-Hop Szenario wird darüberhinaus ein Optimierungsverfahren vorgestellt, das eine benutzerdefinierte Kostenfunktion minimiert, die niedrige Anwendungszuverlässigkeit, hohes Informationsalter und hohen durchschnittlichen Ressourcenverbrauch bestraft und so das benutzerdefinierte optimale SARA-Schema ableitet. Diese Optimierung kann offline durchgeführt und als Look-Up-Table in der unteren Medienzugriffsschicht zukünftiger industrieller Drahtlosnetze implementiert werden.:1. Introduction 1
1.1. The Need for an Industrial Solution . . . . . . . . . . . . . . . . . . . 3
1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2. Related Work 7
2.1. Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3. Codesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1. The Need for Abstraction – Age of Information . . . . . . . . 11
2.4. Dependability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3. Deriving Proper Communications Requirements 17
3.1. Fundamentals of Control Theory . . . . . . . . . . . . . . . . . . . . 18
3.1.1. Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2. Performance Requirements . . . . . . . . . . . . . . . . . . . 21
3.1.3. Packet Losses and Delay . . . . . . . . . . . . . . . . . . . . . 22
3.2. Joint Design of Control Loop with Packet Losses . . . . . . . . . . . . 23
3.2.1. Method 1: Reduced Sampling . . . . . . . . . . . . . . . . . . 23
3.2.2. Method 2: Markov Jump Linear System . . . . . . . . . . . . . 25
3.2.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3. Focus Application: The AGV Use Case . . . . . . . . . . . . . . . . . . 31
3.3.1. Control Loop Model . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2. Control Performance Requirements . . . . . . . . . . . . . . . 33
3.3.3. Joint Modeling: Applying Reduced Sampling . . . . . . . . . . 34
3.3.4. Joint Modeling: Applying MJLS . . . . . . . . . . . . . . . . . 34
3.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4. Modeling Control-Communication Failures 43
4.1. Communication Assumptions . . . . . . . . . . . . . . . . . . . . . . 43
4.1.1. Small-Scale Fading as a Cause of Failure . . . . . . . . . . . . 44
4.1.2. Connectivity Models . . . . . . . . . . . . . . . . . . . . . . . 46
4.2. Failure Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.1. Single-hop network . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2. Dual-hop network . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1. Mean Time to Failure . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.2. Packet Loss Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.3. Average Number of Assigned Channels . . . . . . . . . . . . . 57
4.3.4. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5. Single Hop – Single Agent 61
5.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 61
5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3. Erroneous Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 67
5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6. Single Hop – Multiple Agents 71
6.1. Failure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.1. Admission Control . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.2. Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . 73
6.1.3. Computational Complexity . . . . . . . . . . . . . . . . . . . 74
6.1.4. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 75
6.2. Illustration Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.1. Verification through System-Level Simulation . . . . . . . . . 78
6.3.2. Applicability on the System Level . . . . . . . . . . . . . . . . 79
6.3.3. Comparison of Admission Control Schemes . . . . . . . . . . 80
6.3.4. Impact of the Packet Loss Tolerance . . . . . . . . . . . . . . . 82
6.3.5. Impact of the Number of Agents . . . . . . . . . . . . . . . . . 84
6.3.6. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.7. Channel Saturation Ratio . . . . . . . . . . . . . . . . . . . . 86
6.3.8. Enforcing Full Channel Saturation . . . . . . . . . . . . . . . 86
6.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7. Dual Hop – Single Agent 91
7.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 91
7.2. Optimization Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.3.1. Extensive Simulation . . . . . . . . . . . . . . . . . . . . . . . 96
7.3.2. Non-Integer-Constrained Optimization . . . . . . . . . . . . . 98
7.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8. Conclusions and Outlook 105
8.1. Key Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 105
8.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A. DC Motor Model 111
Bibliography 113
Publications of the Author 127
List of Figures 129
List of Tables 131
List of Operators and Constants 133
List of Symbols 135
List of Acronyms 137
Curriculum Vitae 139 / In industrial manufacturing, Industry 4.0 refers to the ongoing convergence of the real and virtual worlds, enabled through intelligently interconnecting industrial machines and processes through information and communications technology. Ultrareliable low-latency communication (URLLC) is widely regarded as the enabling technology for Industry 4.0 due to its ability to fulfill highest quality-of-service (QoS) comparable to those of industrial wireline connections. In contrast to this trend, a range of works in the research domain of networked control systems have shown that URLLC’s supreme QoS is not necessarily required to achieve high quality-ofcontrol; the co-design of control and communication enables to jointly optimize and balance both quality-of-control parameters and network parameters through blurring the boundary between application and network layer. However, through the tight interlacing, this approach requires a fundamental (joint) redesign of both control systems and communication networks and may therefore not lead to short-term widespread adoption. Therefore, this thesis instead embraces a novel co-design approach which keeps both domains distinct but leverages the combination of control and communications by yet exploiting the age of information (AoI) as a valuable interface metric.
This thesis contributes to quantifying application dependability as a consequence of exceeding a given peak AoI with the particular focus on packet losses. The beneficial influence of negative temporal packet loss correlation on control performance is demonstrated by means of the automated guided vehicle use case. Assuming small-scale fading as the dominant cause of communication failure, a series of communication failures are mapped to an application failure through discrete-time Markov models for single-hop (e.g, only uplink or downlink) and dual-hop (e.g., subsequent uplink and downlink) architectures. This enables the derivation of application-related dependability metrics such as the mean time to failure in closed form. For single-hop networks, an AoI-aware resource allocation strategy termed state-aware resource allocation (SARA) is proposed that increases the application reliability by orders of magnitude compared to static multi-connectivity while keeping the resource consumption in the range of best-effort single-connectivity. This dependability can also be statistically guaranteed on a system level – where multiple agents compete for a limited number of resources – if the provided amount of resources per agent is increased by approximately 10 %. For the dual-hop scenario, an AoI-aware resource allocation optimization is developed that minimizes a user-defined penalty function that punishes low application reliability, high AoI, and high average resource consumption. This optimization may be carried out offline and each resulting optimal SARA scheme may be implemented as a look-up table in the lower medium access control layer of future wireless industrial networks.:1. Introduction 1
1.1. The Need for an Industrial Solution . . . . . . . . . . . . . . . . . . . 3
1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2. Related Work 7
2.1. Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3. Codesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1. The Need for Abstraction – Age of Information . . . . . . . . 11
2.4. Dependability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3. Deriving Proper Communications Requirements 17
3.1. Fundamentals of Control Theory . . . . . . . . . . . . . . . . . . . . 18
3.1.1. Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2. Performance Requirements . . . . . . . . . . . . . . . . . . . 21
3.1.3. Packet Losses and Delay . . . . . . . . . . . . . . . . . . . . . 22
3.2. Joint Design of Control Loop with Packet Losses . . . . . . . . . . . . 23
3.2.1. Method 1: Reduced Sampling . . . . . . . . . . . . . . . . . . 23
3.2.2. Method 2: Markov Jump Linear System . . . . . . . . . . . . . 25
3.2.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3. Focus Application: The AGV Use Case . . . . . . . . . . . . . . . . . . 31
3.3.1. Control Loop Model . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2. Control Performance Requirements . . . . . . . . . . . . . . . 33
3.3.3. Joint Modeling: Applying Reduced Sampling . . . . . . . . . . 34
3.3.4. Joint Modeling: Applying MJLS . . . . . . . . . . . . . . . . . 34
3.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4. Modeling Control-Communication Failures 43
4.1. Communication Assumptions . . . . . . . . . . . . . . . . . . . . . . 43
4.1.1. Small-Scale Fading as a Cause of Failure . . . . . . . . . . . . 44
4.1.2. Connectivity Models . . . . . . . . . . . . . . . . . . . . . . . 46
4.2. Failure Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.1. Single-hop network . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2. Dual-hop network . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1. Mean Time to Failure . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.2. Packet Loss Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.3. Average Number of Assigned Channels . . . . . . . . . . . . . 57
4.3.4. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5. Single Hop – Single Agent 61
5.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 61
5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3. Erroneous Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 67
5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6. Single Hop – Multiple Agents 71
6.1. Failure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.1. Admission Control . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.2. Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . 73
6.1.3. Computational Complexity . . . . . . . . . . . . . . . . . . . 74
6.1.4. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 75
6.2. Illustration Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.1. Verification through System-Level Simulation . . . . . . . . . 78
6.3.2. Applicability on the System Level . . . . . . . . . . . . . . . . 79
6.3.3. Comparison of Admission Control Schemes . . . . . . . . . . 80
6.3.4. Impact of the Packet Loss Tolerance . . . . . . . . . . . . . . . 82
6.3.5. Impact of the Number of Agents . . . . . . . . . . . . . . . . . 84
6.3.6. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.7. Channel Saturation Ratio . . . . . . . . . . . . . . . . . . . . 86
6.3.8. Enforcing Full Channel Saturation . . . . . . . . . . . . . . . 86
6.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7. Dual Hop – Single Agent 91
7.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 91
7.2. Optimization Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.3.1. Extensive Simulation . . . . . . . . . . . . . . . . . . . . . . . 96
7.3.2. Non-Integer-Constrained Optimization . . . . . . . . . . . . . 98
7.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8. Conclusions and Outlook 105
8.1. Key Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 105
8.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A. DC Motor Model 111
Bibliography 113
Publications of the Author 127
List of Figures 129
List of Tables 131
List of Operators and Constants 133
List of Symbols 135
List of Acronyms 137
Curriculum Vitae 139

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:83019
Date23 January 2023
CreatorsScheuvens, Lucas
ContributorsFettweis, Gerhard, Soret, Beatriz, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relationinfo:eu-repo/grantAgreement/Europäische Kommission/Horizon2020/101015956//Hexa-X

Page generated in 0.0047 seconds