Return to search

High-Speed Conventional and Mutually Coupled Toroidal-Winding Switched Reluctance Machines: Design and Comparison

Switched reluctance machines (SRMs) are well known for their simple and robust structure, facilitating their increasing application in many sectors, for example vacuum cleaners, where domestic machines operate at high-speed, 50,000 RPM being typical. Conventional SRMs (CSRMs) use a decoupled concentrated phase winding so that torque is predominantly only generated due to the self-inductance, which limits utilization of the machine electrical circuits.
In this thesis, the toroidal winding SRM (TSRM) is introduced, which operates based on the variation of mutual inductance between different phases. The toroidal winding introduces additional winding space, and the winding is practically easy to implement, both features that lead to a relatively higher copper filling factor. The toroidal winding also benefits the machine thermal performance, as the winding is directly exposed on the machine periphery and thus accessible to cooling. All these make TSRMs interesting and meaningful for further study.
Following a comprehensive comparison of CSRM and TSRM characteristics, a general torque equation is presented that is applicable to both CSRM and TSRM. Two 12-switch converters are proposed to drive three-phase TSRMs. Moreover, sinusoidal current excitation with a commercial three-phase half-bridge converter has been suggested as an alternative converter solution for TSRMs.
Accordingly, a three-phase six-stator-pole, four-rotor-pole CSRM is designed and optimized with a speed of up to 50,000 rpm in this thesis. A TSRM is resized to achieve the same envelope dimension as a benchmark CSRM. Thus, a comparative study between high-speed CSRM and TSRMs has been carried out. They have both been prototyped and tested. The findings suggest that the TSRM is superior, considering machine mass and wire temperature management. The TSRM has a better torque output at lower speeds because copper losses are dominant. However, the CSRM has more advantages at higher speeds due to lower iron losses and lower DC voltage requirements. / Thesis / Doctor of Philosophy (PhD)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/25099
Date January 2019
CreatorsLin, Jianing
ContributorsEmadi, Ali, Schofield, Nigel, Electrical and Computer Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0016 seconds