Return to search

Long-term stability of the hippocampal neural code as a substrate for episodic memory

The hippocampus supports the initial formation and recall of episodic memories, as well as the consolidation of short-term into long-term memories. The ability of hippocampal neurons to rapidly change their connection strengths during learning and maintain these changes over long time-scales may provide a mechanism supporting memory. However, little evidence currently exists concerning the long-term stability of information contained in hippocampal neuronal activity, likely due to limitations in recording extracellular activity in vivo from the same neurons across days. In this thesis I employ calcium imaging in freely moving mice to longitudinally track the activity of large ensembles of hippocampal neurons. Using this technology, I explore the proposal that long-term stability of hippocampal information provides a substrate for episodic memory in three different ways.
First, I tested the hypothesis that hippocampal activity should remain stable across days in the absence of learning. I found that place cells – hippocampal neurons containing information about a mouse’s position – maintain a coherent map relative to each other across long time-scales but exhibit instability in how they anchor to the external world. Furthermore, I found that coherent maps were frequently used to represent a different environment and incorporated learning via changes in a subset of neurons. Next, I examined how learning a spatial alternation task impacts neuron stability. I found that splitter neurons whose activity patterns reflected an animal’s future or past trajectory emerged relatively slowly when compared to place cells. However, splitter neurons remained more consistently active and relayed more consistent spatial information across days than did place cells, suggesting that the utility of information provided by a neuron influences its long term stability. Last, I investigated how protein synthesis, known to be necessary for long-term maintenance of changes in hippocampal neuron connection strengths and for proper memory consolidation, influences their activity patterns across days. I found that along with blocking memory consolidation, inhibiting protein synthesis induced a profound, long-lasting decrease in neuronal activity up to two days later. These results combined demonstrate the importance of rapid, lasting changes in the hippocampal neuronal code to supporting long-term memory.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/36639
Date14 June 2019
CreatorsKinsky, Nathaniel Reid
ContributorsHasselmo, Michael E.
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation
RightsAttribution 4.0 International, http://creativecommons.org/licenses/by/4.0/

Page generated in 0.0022 seconds