Return to search

Extração de feições em dados imagem com alta dimensão por otimização da distância de Bhattacharyya em um classificador de decisão em árvore

Neste trabalho é investigada uma abordagem para extração de feições baseada na otimização da distância de Bhattacharyya em um classificador hierárquico de estrutura binária. O objetivo é mitigar os efeitos do fenômeno de Hughes na classificação de dados imagem hiper-espectrais. A utilização de um classificador em múltiplo-estágio, analisando um sub-conjunto de classes em cada etapa ao invés do conjunto total, permite modos mais eficientes para extrair as feições mais adequadas em cada etapa do procedimento de classificação. Em uma abordagem de árvore binária, somente duas classes são consideradas em cada etapa, permitindo a implementação da distância de Bhattacharyya como um critério para extração de feições em cada nó da árvore. Experimentos foram realizados utilizando dados imagem do sensor AVIRIS. A performance da metodologia proposta é comparada com métodos tradicionais para extração e seleção de feições.

Identiferoai:union.ndltd.org:IBICT/oai:lume56.ufrgs.br:10183/5573
Date January 2005
CreatorsMoraes, Denis Altieri de Oliveira
ContributorsHaertel, Vitor Francisco de Araújo, Clarke, Robin Thomas
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0014 seconds