Return to search

Creep Behavior of Natural Fiber Reinforced Polymer Composites

Creep behavior of natural fiber/polymer composites (NFPCs) was studied in response to the increasing application of this material as structural building products. Factors that influence creep behavior of the composites were investigated by analyzing creep curves of several different NFPC systems, which were designed for overall performance of the composites.
Among different models, the 4-element Burgers type was mostly used for quantitative characterization of the creep curves to compare the properties of different composites. The parameters from the 4-element Burgers model were easily interpretable due to their physical meanings. Generalized Burgers models provided better fit by introducing extra Kelvin units, but they are more complicated. Indexed Burgers models performed better for creep curves within the primary stage in terms of both characterization and prediction.
Creep prediction was attempted through two approaches: modeling and accelerated testing. Burgers models were proven unsuitable for long-term prediction if the creep test time was not long enough. Comparatively, the indexed Burgers and 2-parameter power law models performed better for prediction purposes. Accelerated creep tests were conducted at higher temperatures, and smooth curves were obtained based on the time-temperature superposition (TTS) principle. The accuracy of long-term prediction was unable to be evaluated due to the lack of long-term experimental data.
Several factors were shown to affect the creep resistance of NFPCs. These include polymer matrix type, natural fiber loading, additives, temperature, and weathering treatment. PVC had higher creep resistance than HDPE, and HDPE showed better creep resistance than ultra-high molecular weight polyethylene (UHMWPE). Introducing engineering plastics to form microfibrils in HDPE matrix improved its creep performance. Certain recycled plastics had smaller creep deformation than the corresponding virgin resin. Adding natural fibers into polymer matrix greatly enhanced its creep resistance. The effect of a coupling agent on creep property of NFPCs was dependent on its modulus and coupling effect. UVA, an ultrafine titanium dioxide, slightly reduced the creep deformation of HDPE composites at a low loading level. Higher temperatures led to not only larger instantaneous deformations, but also to higher long-term creep rates. Weathering treatment also affected the creep properties of polymer and NFPCs.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-08302009-214009
Date01 September 2009
CreatorsXu, Yanjun
ContributorsWu, Qinglin, Cao, Quang V., Negulescu, Ioan I., Pang, Su-Seng, Russo, Paul
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-08302009-214009/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0016 seconds