Return to search

Enhancement of Gulf Killifish, Fundulus grandis, Fitness and Reproduction

Gulf killifish, Fundulus grandis, shows promise for commercial development as a marine baitfish species. Significant markets for F. grandis already exist throughout the Gulf Coast, with the vast majority of supply coming from wild-harvests, which can be hampered by seasonal availability and inconsistent fish health and size. The genus Fundulus also represents an important group of model vertebrates for biological study. A recent review paper described this genus as the premier teleost model for environmental biology. New information generated as a result of the work contained in this dissertation may be more broadly applicable to sister species of F. grandis, enhancing the primary goal of improving reproductive output and fitness in cultured individuals of this species.
Results of this dissertation include optimization of culture salinity, female broodfish body size, and dietary lipid composition. Optimal salinity for culture of juvenile F. grandis was 12.0, with growth incrementally increasing between 0.5, 5.0, 8.0, and 12.0. Survival was negatively affected at 0.5. Optimal body size for female broodfish was 12-13 g. Minimum size recommended for broodfish was 7 g and per-unit-mass fecundity begins to level off in females greater than 13 g. Fecundity of F. grandis was less sensitive to manipulations of dietary lipid content than many other fishes. No difference in fecundity was found among fish fed isonitrogenous diets ranging in lipid content from 4.0 to 13.8%. Excess lipid was mostly stored in the intraperitoneal cavity, rather than being partitioned for reproduction. Dietary lipid composition produced very little effect on overall fecundity in F. grandis, despite experimental diets with very different fatty acid (FA) composition. Differences did occur in subsequent larvae at extreme physiological conditions, but these variations were unlikely to have any effect on survival in culture or natural settings. Examinations of FA dynamics across time revealed that F. grandis likely utilizes a combination of mobilization from somatic reserves and de novo biosynthesis of long chain polyunsaturated FAs to compensate for dietary FA deficiency. Overall, the characteristic physiological plasticity of F. grandis also applied to lipid dynamics.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-03242014-125642
Date01 April 2014
CreatorsPatterson, Joshua Thomas
ContributorsGreen, Christopher, Reigh, Robert, Galvez, Fernando, Stephens, Jacqueline, Schowalter, Timothy
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-03242014-125642/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0024 seconds