SPRED proteins are inhibitors of the Ras/ERK/MAPK signaling pathway, an evolutionary highly conserved and very widespread signaling cascade regulating cell proliferation, differentiation, and growth. To elucidate physiological consequences of SPRED2 deficiency, SPRED2 KO mice were generated by a gene trap approach. An initial phenotypical characterization of KO mice aged up to five months identified SPRED2 as a regulator of chondrocyte differentiation and bone growth. Here, the loss of SPRED2 leads to an augmented FGFR-dependent ERK activity, which in turn causes hypochondroplasia-like dwarfism. However, long term observations of older KO mice revealed a generally bad state of health and manifold further symptoms, including excessive grooming associated with severe self-inflicted wounds, an abnormally high water uptake, clear morphological signs of kidney deterioration, and a reduced survival due to sudden death. Based on these observations, the aim of this study was to discover an elicitor of this complex and versatile phenotype.
The observed kidney degeneration in our SPRED2 KO mice was ascribed to hydronephrosis characterized by severe kidney atrophy and apoptosis of renal tubular cells. Kidney damage prompted us to analyze drinking behavior and routine serum parameters. Despite polydipsia, which was characterized by a nearly doubled daily water uptake, the significantly elevated Na+ and Cl- levels and the resulting serum hyperosmolality could not be compensated in SPRED2 KOs. Since salt and water balance is primarily under hormonal control of aldosterone and AVP, we analyzed both hormone levels. While serum AVP was similar in WTs and KOs, even after experimental water deprivation and an extreme loss of body fluid, serum aldosterone was doubled in SPRED2 KO mice. Systematic investigation of contributing upstream hormone axes demonstrated that hyperaldosteronism developed independently of an overactivated Renin-Angiotensin system as indicated by halved serum Ang II levels in KO mice. However, aldosterone synthase expression in the adrenal gland was substantially augmented. Serum corticosterone, which is like aldosterone released from the adrenal cortex, was more than doubled in SPRED2 KOs, too. Similar to corticosterone, the production of aldosterone is at least in part under control of pituitary ACTH, which is further regulated by upstream hypothalamic CRH release. In fact, stress hormone secretion from this complete hypothalamic-pituitary-adrenal axis was upregulated because serum ACTH, the mid acting pituitary hormone, and hypothalamic CRH, the upstream hormonal inductor of HPA axis activity, were also elevated by 30% in SPRED2 KO mice. This was accompanied by an upregulated ERK activity in paraventricular nucleus-containing hypothalamic brain regions and by augmented hypothalamic CRH mRNA levels in our SPRED2 KO mice. In vitro studies using the hypothalamic cell line mHypoE-44 further demonstrated that both SPRED1 and SPRED2 were able to downregulate CRH promoter activity, CRH secretion, and Ets factor-dependent CRH transcription. This was in line with the presence of various Ets factor binding sites in the CRH promoter region, especially for Ets1.
Thus, this study shows for the first time that SPRED2-dependent inhibition of Ras/ERK/MAPK signaling by suppression of ERK activity leads to a downregulation of Ets1 factor-dependent transcription, which further results in inhibition of CRH promoter activity, CRH transcription, and CRH release from the hypothalamus. The consecutive hyperactivity of the complete HPA axis in our SPRED2 KO mice reflects an elevated endogenous stress response becoming manifest by excessive grooming behavior and self-inflicted skin lesions on the one hand; on the other hand, in combination with elevated aldosterone synthase expression, this upregulated HPA hormone release explains hyperaldosteronism and the associated salt and water imbalances. Both hyperaldosteronism and polydipsia very likely contribute further to the observed kidney damage.
Taken together, this study initially demonstrates that SPRED2 is essential for the appropriate regulation of HPA axis activity and of body homeostasis.
To further enlighten and compare consequences of SPRED2 deficiency in mice and particularly in humans, two follow-up studies investigating SPRED2 function especially in heart and brain, and a genetic screen to identify human SPRED2 loss-of-function mutations are already in progress. / SPRED-Proteine sind Inhibitoren des hochkonservierten und in allen Geweben verbreiteten Ras/ERK/MAPK-Signalwegs, welcher Proliferation, Differenzierung und das Wachstum von Zellen reguliert. Um physiologische Konsequenzen der SPRED2-Defizienz im lebenden Modellorganismus aufzuklären, haben wir SPRED2-KO-Mäuse mithilfe der „gene trap“-Methode generiert. Eine erste Studie zur phänotypischen Charakterisierung mit KO-Mäusen bis zu einem Alter von fünf Monaten identifizierte SPRED2 als Regulator der Chondrozytendifferenzierung und des Knochenwachstums. So bewirkt der Verlust der SPRED2-Proteinfunktion eine erhöhte FGFR-vermittelte ERK-Aktivität, was wiederum einen Hypochondroplasie-ähnlichen Minderwuchs verursacht. Allerdings offenbarten Langzeitbeobachtungen älterer KO-Mäuse einen im Allgemeinen sehr schlechten Gesundheitszustand und weitere facettenreiche Symptome, darunter exzessives Putzverhalten mit schweren, selbst zugefügten Wunden, einen abnorm hohen täglichen Wasserkonsum, klare morphologische Anzeichen einer Nierenschädigung und eine reduzierte Überlebenswahrscheinlichkeit durch plötzlichen Tod. Ziel dieser Studie war es, basierend auf unseren Beobachtungen, einen Auslöser für diesen komplexen und vielseitigen Phänotyp zu finden.
Die beobachtete Nierendegeneration in unseren SPRED2-KO-Mäusen war auf eine Hydronephrose zurückzuführen, welche durch schwere Atrophie des Nierengewebes und Apoptose von Nierentubuluszellen gekennzeichnet war. Aufgrund des Nierenschadens haben wir Trinkverhalten und gängige Serumparameter analysiert. Trotz der Polydipsie, die sich durch eine nahezu verdoppelte tägliche Wasseraufnahme manifestierte, konnten signifikant erhöhte Na+- und Cl--Werte und die daraus resultierende Hyperosmolalität im Serum der SPRED2-KOs nicht kompensiert werden. Weil Salz- und Wasserhaushalt zum größten Teil unter der hormonellen Kontrolle von Aldosteron und ADH stehen, haben wir beide Hormonspiegel untersucht. Während die ADH-Werte im Serum von WT- und KO-Mäusen vergleichbar waren, insbesondere nach experimentellem Wasserentzug und einem extremen Verlust von Körperflüssigkeit, waren die Serumspiegel von Aldosteron in den SPRED2-KO-Mäusen verdoppelt. Die systematische Untersuchung übergeordneter regulatorischer Hormonachsen ergab, dass sich der Hyperaldosteronismus unabhängig von einer erhöhten Aktivität des Renin-Angiotensin-Systems entwickelte, da die Serum-Ang II-Spiegel in den SPRED2-KOs etwa um die Hälfte reduziert waren. Die Expression der Aldosteronsynthase in der Nebenniere war jedoch wesentlich erhöht. Für Kortikosteron, das wie Aldosteron von der Nebennierenrinde freigesetzt wird, konnten wir ebenfalls mehr als doppelt so hohe Werte im Serum der KO-Tiere detektieren. Die Aldosteron-Produktion steht, ähnlich wie bei Kortikosteron, zumindest teilweise unter der Kontrolle des hypophysären Hormons ACTH, dessen Sekretion wiederum übergeordnet durch die Freisetzung von CRH aus dem Hypothalamus geregelt wird. Tatsächlich war die Stresshormon-Sekretion entlang dieser gesamten Hypothalamus-Hypophysen-Nebennierenrinden-Achse erhöht, da Serum-ACTH, das mittlere, hypophysäre Hormon, und hypothalamisches CRH, der übergeordnete hormonelle Induktor der HPA-Achse, in den SPRED2-KOs auch um 30% erhöht waren. Zusätzlich waren die ERK-Aktivität ebenso wie die CRH-mRNA-Spiegel im paraventrikulären Nukleus des Hypothalamus in unseren SPRED2-KO-Mäusen deutlich höher. In vitro Studien mit der Hypothalamus-Zelllinie mHypoE-44 zeigten weiterhin, dass sowohl SPRED1 als auch SPRED2 die Aktivität des CRH-Promotors, die CRH-Sekretion und die Ets-Faktor-abhängige CRH-Transkription reduzieren können. Passend dazu enthält die CRH-Promotorregion zahlreiche verschiedene Bindungsstellen für Transkriptionsfaktoren der Ets-Familie, speziell für Ets1.
Somit zeigt diese Studie zum ersten Mal, dass die durch SPRED2-vermittelte Hemmung der Ras/ERK/MAPK-Signalkaskade mittels Unterdrückung der ERK-Aktivität zu einer Herunterregulation der Ets1-Faktor-abhängigen Transkription führt, was eine Hemmung der CRH-Promotoraktivität, der CRH-Transkription und der CRH-Freisetzung aus dem Hypothalamus zur Folge hat. Die daraus resultierende Hyperaktivität der gesamten HPA-Achse in unseren SPRED2-KO-Mäusen spiegelt eine erhöhte endogene Stress-Reaktion wider und äußert sich durch übermäßiges Putzverhalten und durch selbst zugefügte Hautläsionen auf der einen Seite; auf der anderen Seite erklärt dies, in Kombination mit der erhöhten Aldosteronsynthase-Expression, den Hyperaldosteronismus und das damit verbundene Ungleichgewicht in Salz- und Wasserhaushalt. Weiterhin tragen sowohl Hyperaldosteronismus als auch Polydipsie sehr wahrscheinlich zu den beobachteten Nierenschädigungen bei.
Zusammengefasst ist diese Studie ein erster Hinweis, dass SPRED2 wesentlich an der adäquaten Regulation der HPA-Achsen-Aktivität beteiligt ist und essentiell ist für die Aufrechterhaltung der Homöostase im Körper.
Um die Folgen von SPRED2-Defizienz in Mäusen und vor allem im Menschen weiter aufzuklären und zu vergleichen, erforschen wir in zwei Folgeprojekten die Funktion von SPRED2 speziell im Gehirn und im Herzen und führen parallel ein genetisches Screening zur Identifikation von funktionellen SPRED2-Mutationen im Menschen durch.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:10735 |
Date | January 2014 |
Creators | Ullrich, Melanie |
Source Sets | University of Würzburg |
Language | English |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by/3.0/de/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.0076 seconds