Return to search

Tensor renormalization group methods for spin and gauge models

The analysis of the error of perturbative series by comparing it to the exact solution is an important tool to understand the non-perturbative physics of statistical models. For some toy models, a new method can be used to calculate higher order weak coupling expansion and modified perturbation theory can be constructed. However, it is nontrivial to generalize the new method to understand the critical behavior of high dimensional spin and gauge models. Actually, it is a big challenge in both high energy physics and condensed matter physics to develop accurate and efficient numerical algorithms to solve these problems. In this thesis, one systematic way named tensor renormalization group method is discussed. The applications of the method to several spin and gauge models on a lattice are investigated. theoretically, the new method allows one to write an exact representation of the partition function of models with local interactions. E.g. O(N) models, Z2 gauge models and U(1) gauge models. Practically, by using controllable approximations, results in both finite volume and the thermodynamic limit can be obtained. Another advantage of the new method is that it is insensitive to sign problems for models with complex coupling and chemical potential. Through the new approach, the Fisher's zeros of the 2D O(2) model in the complex coupling plane can be calculated and the finite size scaling of the results agrees well with the Kosterlitz-Thouless assumption. Applying the method to the O(2) model with a chemical potential, new phase diagram of the models can be obtained. The structure of the tensor language may provide a new tool to understand phase transition properties in general.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-5459
Date01 July 2014
CreatorsZou, Haiyuan
ContributorsMeurice, Yannick
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typedissertation
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright 2014 Haiyuan Zou

Page generated in 0.0021 seconds