Return to search

Propriedades geométricas do grupo de renormalização em redes hierárquicas. / Geometrical properties of the renormalization group in hierarchical lattices.

Neste trabalho estudamos o comportamento crítico do modelo de Potts p-estados na árvore de Cayley, através das propriedades do conjunto de zeros de Yang-Lee da função de partição. Tratando a transformação do grupo de renormalização como um mapeamento racional na esfera de Riemann utiliza-se alguns resultados da teoria de Julia e Fatou para obter-se uma descrição geométrica do comportamento crítico do modelo. Mostra-se de que forma o conjunto de zeros de Yang-Lee se relaciona com o conjunto de Julia do mapa do grupo de renormalização, e calculam-se alguns parâmetros geométricos desse conjunto que descrevem o comportamento não universal do modelo. / We study the critical behavior of the p-state Potts model on a Cayley tree, looking for the properties of the Yang-Lee zeros set of the partition function. We treated the renormalization group transformation as a rational mapping on the Riemann sphere, and use some results from the Julia and Fatou theory to obtain a geometrical description of the critical properties of the model. We show how the Yang-Lee zeros set is associated with the Julia set of the renormalization group map, and we also calculate some geometrical parameters of this set which describes the non-universal behavior of the model.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-30042009-101638
Date21 November 1988
CreatorsBosco, Francisco de Assis Ribas
ContributorsRosa Junior, Sylvio Goulart
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0019 seconds