Accurate spatial population data are an important requirement in many applications. In this thesis, the problem of disaggregating the spatial distribution of population density and rent costs using a machine learning model is studied. An approach based on freely available ancillary data such as OpenStreetMap and Urban Atlas is proposed and implemented in the form of an automated Python toolbox for ArcGIS. The applications on the urban areas of Prague, Vienna and Ljubljana show promising results, overperforming the competing population disaggregation solutions in spatial resolution and displaying a satisfying degree of transferability. A number of further improvements is suggested. Powered by TCPDF (www.tcpdf.org)
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:347068 |
Date | January 2016 |
Creators | Šimbera, Jan |
Contributors | Brůha, Lukáš, Hudeček, Tomáš |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0018 seconds