Return to search

Data-driven System Design in Service Operations

The service industry has become an increasingly important component in the world's economy. Simultaneously, the data collected from service systems has grown rapidly in both size and complexity due to the rapid spread of information technology, providing new opportunities and challenges for operations management researchers. This dissertation aims to explore methodologies to extract information from data and provide powerful insights to guide the design of service delivery systems. To do this, we analyze three applications in the retail, healthcare, and IT service industries. In the first application, we conduct an empirical study to analyze how waiting in queue in the context of a retail store affects customers' purchasing behavior. The methodology combines a novel dataset collected via video recognition technology with traditional point-of-sales data. We find that waiting in queue has a nonlinear impact on purchase incidence and that customers appear to focus mostly on the length of the queue, without adjusting enough for the speed at which the line moves. We also find that customers' sensitivity to waiting is heterogeneous and negatively correlated with price sensitivity. These findings have important implications for queueing system design and pricing management under congestion. The second application focuses on disaster planning in healthcare. According to a U.S. government mandate, in a catastrophic event, the New York City metropolitan areas need to be capable of caring for 400 burn-injured patients during a catastrophe, which far exceeds the current burn bed capacity. We develop a new system for prioritizing patients for transfer to burn beds as they become available and demonstrate its superiority over several other triage methods. Based on data from previous burn catastrophes, we study the feasibility of being able to admit the required number of patients to burn beds within the critical three-to-five-day time frame. We find that this is unlikely and that the ability to do so is highly dependent on the type of event and the demographics of the patient population. This work has implications for how disaster plans in other metropolitan areas should be developed. In the third application, we study workers' productivity in a global IT service delivery system, where service requests from possibly globally distributed customers are managed centrally and served by agents. Based on a novel dataset which tracks the detailed time intervals an agent spends on all business related activities, we develop a methodology to study the variation of productivity over time motivated by econometric tools from survival analysis. This approach can be used to identify different mechanisms by which workload affects productivity. The findings provide important insights for the design of the workload allocation policies which account for agents' workload management behavior.

Identiferoai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/D8WM1MSF
Date January 2013
CreatorsLu, Yina
Source SetsColumbia University
LanguageEnglish
Detected LanguageEnglish
TypeTheses

Page generated in 0.0027 seconds