Return to search

Revenue optimization for a hotel property with different market segments : demand prediction, price selection and capacity allocation

Thesis: S.M., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2017. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Cataloged from student-submitted PDF version of thesis. / Includes bibliographical references (pages 53-55). / We present our work with a hotel company as an example of how machine learning techniques can be used to improve the demand predictions of a hotel property, as well as its pricing and capacity allocation decisions. First, we build a price-sensitive random forest model to predict the number of daily bookings for each customer market segment. We feed these predictions into a mixed integer linear program (MILP) to optimize prices and capacity allocations at the same time. We prove that the MILP can be equivalently solved as a linear program, and then show that it produces upper and lower bounds for the expected revenue maximization Dynamic Program (DP), and that the gap between the bounds depends on the probabilistic distribution of the demand. Thus, for high prediction accuracies, the optimal value of the DP can be closely approximated by the MILP solution. Finally, numerical results show that the optimized decisions are able to generate an increase in revenue compared to the historical policies, and that the fast running time achieved permits real time policy updates. / by Eduardo Candela Garza. / S.M.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/113433
Date January 2017
CreatorsCandela Garza, Eduardo
ContributorsDavid Simchi-Levi., Massachusetts Institute of Technology. Operations Research Center., Massachusetts Institute of Technology. Operations Research Center.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format55 pages, application/pdf
RightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0019 seconds