Return to search

[en] NATURAL CONVECTION INFLUENCE IN THE COOLDOWN OF OIL AND GAS SUBSEA PIPELINES / [pt] INFLUÊNCIA DA CONVECÇÃO NATURAL NO RESFRIAMENTO DE DUTOS SUBMARINOS DE PETRÓLEO E GÁS

[pt] No processo de transporte e produção de petróleo e seus
derivados em
linhas submarinas, o controle da transferência de calor
entre o produto quente e o
mar frio, é fundamental para a garantia do escoamento. Se
a temperatura do
produto cair abaixo de determinados valores críticos,
problemas como formação
de hidratos ou deposição de parafina nas paredes da
tubulação podem ocorrer,
levando ao bloqueio da linha e interrupção de produção,
demandando altos
custos. A perda de calor para o ambiente é minimizada,
através de isolantes
térmicos projetados para operações em regime permanente.
Nestes casos, devido
às altas velocidades do escoamento axial, o qual é
tipicamente turbulento, o
processo de transferência de calor dominante é o de
convecção forçada. Porém,
durante uma operação de manutenção de algum equipamento, a
produção pode
ser interrompida e o fluido ficando parado no interior da
linha, tende a resfriar-se
podendo atingir uma temperatura crítica. Durante este
resfriamento, na ausência
de bombeio, o processo de convecção natural passa a
dominar. O presente
trabalho analisa o processo de transferência de calor após
a parada de bombeio,
considerando os efeitos da convecção natural no
resfriamento do produto, assim
como a influência da capacidade térmica da parede do duto
e das camadas de
revestimento no transiente térmico. Inicialmente,
considera-se que o escoamento
axial é rapidamente levado ao repouso e utiliza-se um
modelo bidimensional da
seção transversal do duto, utilizando três produtos
típicos: um óleo leve, um óleo
pesado, e um gás. Os campos de velocidade e temperatura
são obtidos
numericamente utilizando o software FLUENT, considerando a
hipótese de
Boussinesq para avaliar a convecção natural. A taxa de
resfriamento obtida é
comparada com a previsão de um modelo unidimensional na
direção axial, que
utiliza correlações empíricas para avaliar a transferência
de calor entre o fluido a parede da tubulação, em função
do regime de escoamento. Boa concordância
entre as simulações para a seção central da linha é
obtida. No entanto, como as
variações axiais para o caso do gás são maiores, para este
produto, um modelo
tridimensional também foi analisado, onde se considerou os
efeitos combinados
da convecção forçada e natural. Adicionalmente, a hipótese
de Boussinesq foi
eliminada, e a equação de gás ideal foi considerada. / [en] Heat transfer control is crucial for flow assurance in
transport as well as
production operations of oil and its derivatives in subsea
lines. If the product
temperature falls below certain critical values, problems
such as hydrate
formation or wax deposition in the pipelines walls can
occur, inducing line
blockage and interruption of production, demanding high
costs. The heat loss to
the environment is minimized by employing thermal
insulation, which are
designed for stead state operations. For these cases, due
to high axial velocities,
the flow is typically turbulent, and the dominant heat
transfer mechanism is due
to convection forced. However, during maintenance
operation of some
equipment, the production can be interrupted and the
stagnant fluid in the interior
of the line tends to cool down and it can reach a critical
temperature. During this
cooling, in the absence of pumps, the process of natural
convection begins to
dominate. The present work analyzes the heat transfer
process after flow
shutdown, considering the effect of the natural
convection, as well as the
influence in the thermal transient of the thermal capacity
of the duct wall and
insulation layers. Initially, it is considered that the
axial flow is set to rest very
quickly and a two-dimensional model of the transversal
section of the duct is
employed, using three typical products: light oil, heavy
oil and pressurized gas.
The velocity and temperature filed are obtained using the
numerical software
FLUENT, considering the hypothesis of Boussinesq to
evaluate the natural
convection. The cooling rate is compared with the forecast
of a unidimensional
model in the axial direction based on empirical
correlations, function of the flow
regime, to evaluate the heat transfer between the fluid
and the duct wall. Good
agreement is obtained between the solutions of the 2-D
model and the pipeline
central cross section of the 1-D model. However, as the
axial variations for the gas case are significant, for
this product, a three-dimensional model also was
analyzed, where it was considered the effects of the
forced and natural
convection. Additionally, the hypothesis of Boussinesq was
eliminated, and the
ideal gas equation was considered.

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:11028
Date13 December 2007
CreatorsDENI LEMGRUBER QUEIROZ
ContributorsANGELA OURIVIO NIECKELE
PublisherMAXWELL
Source SetsPUC Rio
LanguagePortuguese
Detected LanguageEnglish
TypeTEXTO

Page generated in 0.0027 seconds