Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Mecânica, Florianópolis, 2010 / Made available in DSpace on 2012-10-25T03:57:16Z (GMT). No. of bitstreams: 1
285784.pdf: 3511851 bytes, checksum: ff89e124f69a4f069157f3c48967ef06 (MD5) / Nos últimos vinte anos, com a progressiva miniaturização de quipamentos e sistemas de engenharia e o conseqüente aumento das taxas com que calor é dissipado por unidade de área, diferentes tecnologias vêm sendo avaliadas para o resfriamento de altos fluxos de calor em componentes eletrônicos. Sistemas de resfriamento envolvendo a mudança de fase líquido-vapor de um fluido de trabalho, como termossifões bifásicos e ebulição em convecção forçada em microcanais, são atualmente experimentados em diversas aplicações. Dentre as alternativas mais promissoras, destaca-se o resfriamento por jatos bifásicos (spray cooling), o qual consiste na atomização de um fluido de trabalho no estado líquido através de um injetor (ou um arranjo de injetores) direcionado à superfície a ser resfriada. Dependendo das condições de operação, uma fina película de líquido pode cobrir totalmente a superfície aquecida e diferentes regimes de transferência de calor por ebulição podem se fazer presentes. Tais cenários proporcionam elevados valores do coeficiente de transferência de calor por convecção, fazendo com que um alto fluxo de calor possa ser removido mediante um pequeno grau de superaquecimento da superfície do aquecedor. Este trabalho apresenta uma análise teórica do processo de resfriamento com um único spray incidindo perpendicularmente a uma superfície plana voltada para cima. O modelo matemático para o campo de velocidades, temperaturas e concentração de gotículas por unidade de volume de spray é baseado em uma formulação de dois fluidos diferencial quasi-bidimensional que considera a variação radial dos campos de velocidade no spray por meio de perfis gaussianos. Um critério para a existência de um filme contínuo sobre a superfície aquecida é apresentado com base na relação entre a frequência com que as gotas atingem a superfície e o tempo de ciclo de vida das mesmas, o qual é definido com o tempo decorrido ao longo do impacto, espalhamento e secagem total de
uma gota. Quando as condições de operação são tais que um filme líquido
contínuo é formado, um modelo matemático é proposto para se determinar a variação da espessura da película em função da distância radial a partir do eixo de simetria do jato. Tal modelo é baseado em um balanço de quantidade de movimento no filme, levando em conta a transferência de quantidade de movimento ao filme por parte das gotas incidentes e assumindo que o perfil de velocidades no filme obedeça à lei-log universal. A transferência de calor por ebulição no filme fino é computada com base em um modelo de superposição onde a parcela de ebulição nucleada é
computada por meio da correlação de Nishikawa para filmes líquidos finos. O modelo é verificado a partir de dados experimentais obtidos por diversos autores para fluidos de trabalho como água, FC-72 e R-134a, onde se observa uma concordância da ordem de ± 30%para o coeficiente de transferência de calor médio. Um modelo matemático também é apresentado para a transferência de calor no regime de filme líquido descontínuo, o qual é baseado naquele proposto por Aoki para a evaporação de uma gotícula impactando sobre uma superfície. O modelo proposto combina o modelo de Aoki para a fração da superfície coberta pelas gotas com um modelo para a convecção forçada monofásica na fração da superfície em contato direto com o vapor. / Over the last twenty years, with the progressive miniaturization trend of engineering systems, there has been a continuous increase of the rates with which heat is dissipated per unit area in electronic equipment. Among the many technologies under constant evaluation and development for cooling of high heat fluxes, such as two-phase thermosyphons, heat pipes and forced convection boiling in microchannels, spray cooling is one of the most promising due to the high heat transfer coefficients involved. The technique consists of atomizing a working fluid through a nozzle (or a nozzle array)
directed to ward the surface to be cooled. Depending on the operating conditions, a thin liquid film can cover completely the heated surface and various regimes of boiling heat transfer can be present. These conditions provide high values for the heat transfer coefficient, which enables the removal of the large heat transfer rates with a small superheating of the heater wall. This work presents a theoretical analysis of the cooling process with a single spray perpendicular to an upward-facing flat plate heater.
The mathematical model for determining the phase velocities, temperatures and droplet concentration per unit volume in the spray is based on a two-fluid quasi two-dimensional differential formulation which considers the variation of velocities in the radial direction via Gaussian distributions. A criterion for the existence of a continuous film on the heated surface is presented based on the relation between the droplet lifetime on the heated surface and the frequency with which it reaches the heated surface.
When the operating conditions are such that a continuous liquid film is formed, a mathematical model is proposed to determine the variation of the film thickness as a function of the radial distance from the spray center line. This model is based on mass and momentum balances, taking into account the momentum transfer to the film by the drops which impact on its free surface. A universal log-law velocity profile is assumed in the liquid film. Boiling heat transfer in the thin film is computed based on a superposition model using the thin liquid film boiling correlation of Nishikawa. The model
is verified against experimental data obtained by several authors for working fluids such as water, FC-72 and R-134a, with an average agreement of ± 30%for the average heat transfer coefficient. A mathematical model was also developed for heat transfer in the discontinuous liquid film regime based on the theory advanced by Aoki for the evaporation of a single droplet impacting on a surface. The proposed calculation method combines the Aoki model for the fraction of the surface covered by the drops with a model for the single-phase forced convection heat transfer in the fraction of the surface in direct contact with the vapor.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufsc.br:123456789/93845 |
Date | 25 October 2012 |
Creators | Lückmann, Antônio José |
Contributors | Universidade Federal de Santa Catarina, Barbosa Junior, Jader Riso |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | 189 p.| il., grafs., tabs. |
Source | reponame:Repositório Institucional da UFSC, instname:Universidade Federal de Santa Catarina, instacron:UFSC |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds