Les pièces de structure aéronautique utilisées dans l’aéronautique sont fabriquées en plusieurs étapes. Des étapes, comme le traitement thermique, génèrent des contraintes résiduelles. Les enlèvements de matière réalisés par les opérations d’usinage peuvent alors conduire à la réorganisation des contraintes résiduelles dans la matière et ainsi à la déformation de la pièce. La mesure in-situ de ces déformations devient nécessaire lorsque ce phénomène est étudié. Ces travaux de thèse abordent cette problématique dans le cadre du projet SIMP-Aero. L’objectif de ces travaux de thèse est d’adapter la méthode de corrélation d’images numériques à la mesure de la déformation de pièce pendant l’usinage, c’est-à-dire dans un centre d’usinage. Pour cela, plusieurs améliorations sont apportées à la méthode. Premièrement, les mouvements du système optique sont pris en compte afin que ceux-ci n’altère pas la qualité des mesures. Ensuite, les copeaux présents sur les images sont détectés et filtrés par un algorithme. Au final, la méthode développée permet de mesurer des champs de déplacement durant toute la séquence d’usinage, sans devoir l’interrompre, avec une incertitude de mesure de l’ordre du centième de millimètre. / Structural aluminum alloy parts used in aeronautics are manufactured in several steps, from forming processes and heat treatments to final machining. Some of the process steps induce residual stresses. The material removal during machining release these residual stresses and thus, leads to the part deformation. The in-situ measurement of these deformations becomes necessary when this phenomenon is studied. The present work address this problematic in the context of the ANR SIMP-Aero Project. It aims to define a reliable experimental technique dedicated to the measurement of part deformations during machining of large aeronautical parts. The backbone of the technique relies on Digital Image Correlation (DIC). Mainly as a consequence of the harsh constraints environment of machining, the customization of DIC is required. First, movements of the optical system are quantified and compensated for the proper measurement of the workpiece displacement. Then, the metal chips that fly between the observed surface and the acquisition system are detected and filtered by the algorithm. Finally, the developed method enables the measurement of displacement fields throughout the whole machining sequence, without interrupting it, and a measurement uncertainty of around one hundredth of a millimeter is ensured.
Identifer | oai:union.ndltd.org:theses.fr/2018CLFAC065 |
Date | 10 December 2018 |
Creators | Rebergue, Guillaume |
Contributors | Clermont Auvergne, Chanal, Hélène |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0017 seconds