La prédiction de mouvement de solide évoluant dans un fluide présente un réel intérêt pour des applications industrielles telle que l’accrétion de glace sur des surfaces aérodynamiques. Dans ce contexte, en considérant des systèmes de dégivrage, la prévision des trajectoire de glace est nécessaire pour éviter des risques de collision/ingestion de glace sur/dans des zones sensibles de l’avion. Ce type d’application soulève de nombreux challenges d’un point de vue numérique, en particulier concernant la génération/l’adaptation de maillage au cours du mouvement du solide dans le domaine. Pour gérer ces difficultés, dans cette étude, les solides sont définis de manière implicite via une fonction level set. Une méthode de type frontière immergée, appelée Pénalization, est utilisée pour imposer les conditions de bords. Pour améliorer la précision de l’interface, les équations sont résolues sur des maillages non structurés adaptatifs. Cela permet d’obtenir un raffinement proche des bords du solide et ainsi d’améliorer sa définition, permettant un meilleure impositions des conditions de bord. Pour économiser du temps de calcul, et éviter de coûteuses étapes de remaillage/interpolation, la stratégie adoptée pour les simulations instationnaires est d’utiliser une adaptation de maillage à connectivité constante, aussi appelée r-adaptation. / The prediction of solid motion evolving in a fluid presents a real interest for engineering application such as ice accretion on aerodynamics bodies.In this context, considering de-icing systems, the ice shedding trajectory is needed to prevent the risk of collision/ingestion of the ice in/with some sensitive part of the aircraft. This application raises many challenges from a numerical point of view, especially concerning mesh generation/adaptation as the solid moves in the computational domain. To handle this issue, in this work the solids are known implicitly on the mesh via a level set function. An immersed boundary method, called penalization, is employed to impose the wall boundary conditions. To improve the resolution of these boundaries, the equations are solved on adaptive unstructured grids. This allows to have are finement close to the solid boundary and thus increases the solid definition,leading to a more accurate imposition of the wall conditions. To save computational time, and avoid costly remeshing/interpolation steps, the strategy chosen for unsteady simulations is to use a constant connectivity mesh adaptation,also known as r-adaptation
Identifer | oai:union.ndltd.org:theses.fr/2016BORD0410 |
Date | 16 December 2016 |
Creators | Nouveau, Léo |
Contributors | Bordeaux, Ricchiuto, Mario, Beaugendre, Héloïse, Dobrzynski, Cécile |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0017 seconds