Return to search

Effect of High Percentages of Reclaimed Asphalt Pavement on Mechanical Properties of Cement-Treated Base Material

Full-depth reclamation (FDR) is an increasingly common technique that is used to rehabilitate flexible pavements. Implementation of FDR on rehabilitation projects produces several desirable benefits. However, these benefits are not fully realized due to the fact that state department of transportation specifications typically limit the reclaimed asphalt pavement (RAP) content of pavement base material to 50 percent. The objective of this research was to evaluate the effects of RAP content, cement content, temperature, curing time, curing condition, and moisture state on the strength, stiffness, and deformation characteristics of cement-treated base (CTB) mixtures containing high percentages of RAP.For this research, one aggregate base material and one RAP material were used for all samples. RAP content ranged from 0 to 100 percent in increments of 25 percent, and low, medium, and high cement levels corresponding to 7-day unconfined compressive strength (UCS) values of 200, 400, and 600 psi, respectively, were selected for testing. Moisture-density, UCS, resilient modulus, and permanent deformation tests were performed for various combinations of factors, and several statistical analyses were utilized to evaluate the results of the UCS, resilient modulus, and permanent deformation testing.The results of this work show that CTB containing RAP can be made to achieve 7-day UCS values approaching 600 psi regardless of RAP content. With regards to stiffness, the data collected in this study indicate that the resilient modulus of CTB containing RAP is affected by temperature in the range from 72 to 140°F for the low cement level. Permanent deformation of CTB containing RAP is significantly affected by RAP content and cement level at the test temperature of 140°F. At the low cement level, temperature is also a significant variable. As the 7-day UCS reaches approximately 400 psi, permanent deformation is reduced to negligible quantities. The results of this research indicate that the inverse relationship observed between permanent deformation and 7-day UCS is statistically significant.Given that the principle conclusion from this work is that CTB with high RAP contents can perform satisfactorily as a base material when a sufficient amount of cement is applied, agencies currently specifying limits on the percentage of RAP that can be used as a part of reclaimed base material in the FDR process should reevaluate their policies and specifications with the goal of allowing the use of high RAP contents where appropriate.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-5216
Date10 July 2014
CreatorsTolbert, Jacob Clark
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0023 seconds