Die Strahlentherapie ist neben der Chemotherapie und einer operativen Entfernung die stärkste Waffe für die Bekämpfung bösartiger Tumore in der Krebsmedizin. Nach Herz-Kreislauf-Erkrankungen ist Krebs die zweithäufigste Todesursache in der westlichen Welt, wobei Prostatakrebs heutzutage die häufigste, männliche Krebserkrankung darstellt. Trotz technologischer Fortschritte der radiologischen Verfahren kann es noch viele Jahre nach einer Radiotherapie zu einem Rezidiv kommen, was zum Teil auf die hohe Resistenzfähigkeit einzelner, entarteter Zellen des lokal vorkommenden Tumors zurückgeführt werden kann. Obwohl die moderne Strahlenbiologie viele Aspekte der Resistenzmechanismen näher beleuchtet hat, bleiben Fragestellungen, speziell über das zeitliche Ansprechen eines Tumors auf ionisierende Strahlung, größtenteils unbeantwortet, da systemweite Untersuchungen nur begrenzt vorliegen.
Als Zellmodelle wurden vier Prostata-Krebszelllinien (PC3, DuCaP, DU-145, RWPE-1) mit unterschiedlichen Strahlungsempfindlichkeiten kultiviert und auf ihre Überlebensfähigkeit nach ionisierender Bestrahlung durch einen Trypanblau- und MTT-Vitalitätstest geprüft. Die proliferative Kapazität wurde mit einem Koloniebildungstest bestimmt. Die PC3 Zelllinie, als Strahlungsresistente, und die DuCaP Zelllinie, als Strahlungssensitive, zeigten dabei die größten Differenzen bezüglich der Strahlungsempfindlichkeit. Auf Grundlage dieser Ergebnisse wurden die beiden Zelllinien ausgewählt, um anhand ihrer transkriptomweiten Genexpressionen, eine Identifizierung potentieller Marker für die Prognose der Effizienz einer Strahlentherapie zu ermöglichen. Weiterhin wurde mit der PC3 Zelllinie ein Zeitreihenexperiment durchgeführt, wobei zu 8 verschiedenen Zeitpunkten nach Bestrahlung mit 1 Gy die mRNA mittels einer Hochdurchsatz-Sequenzierung quantifiziert wurde, um das dynamisch zeitversetzte Genexpressionsverhalten auf Resistenzmechanismen untersuchen zu können.
Durch das Setzen eines Fold Change Grenzwertes in Verbindung mit einem P-Wert < 0,01 konnten aus 10.966 aktiven Genen 730 signifikant differentiell exprimierte Gene bestimmt werden, von denen 305 stärker in der PC3 und 425 stärker in der DuCaP Zelllinie exprimiert werden. Innerhalb dieser 730 Gene sind viele stressassoziierte Gene wiederzufinden, wie bspw. die beiden Transmembranproteingene CA9 und CA12. Durch Berechnung eines Netzwerk-Scores konnten aus den GO- und KEGG-Datenbanken interessante Kategorien und Netzwerke abgeleitet werden, wobei insbesondere die GO-Kategorien Aldehyd-Dehydrogenase [NAD(P)+] Aktivität (GO:0004030) und der KEGG-Stoffwechselweg der O-Glykan Biosynthese (hsa00512) als relevante Netzwerke auffällig wurden. Durch eine weitere Interaktionsanalyse konnten zwei vielversprechende Netzwerke mit den Transkriptionsfaktoren JUN und FOS als zentrale Elemente identifiziert werden.
Zum besseren Verständnis des dynamisch zeitversetzten Ansprechens der strahlungsresistenten PC3 Zelllinie auf ionisierende Strahlung, konnten anhand der 10.840 exprimierten Gene und ihrer Expressionsprofile über 8 Zeitpunkte interessante Einblicke erzielt werden. Während es innerhalb von 30 min (00:00 - 00:30) nach Bestrahlung zu einer schnellen Runterregulierung der globalen Genexpression kommt, folgen in den drei darauffolgenden Zeitabschnitten (00:30 - 01:03; 01:03 - 02:12; 02:12 - 04:38) spezifische Expressionserhöhungen, die eine Aktivierung schützender Netzwerke, wie die Hochregulierung der DNA-Reparatursysteme oder die Arretierung des Zellzyklus, auslösen. In den abschließenden drei Zeitbereichen (04:38 - 09:43; 09:43 - 20:25; 20:25 - 42:35) liegt wiederum eine Ausgewogenheit zwischen Induzierung und Supprimierung vor, wobei die absoluten Genexpressionsveränderungen ansteigen. Beim Vergleich der Genexpressionen kurz vor der Bestrahlung mit dem letzten Zeitpunkt (00:00 - 42:53) liegen mit 2.670 die meisten verändert exprimierten Gene vor, was einer massiven, systemweiten Genexpressionsänderung entspricht. Signalwege wie die ATM-Regulierung des Zellzyklus und der Apoptose, des NRF2-Signalwegs nach oxidativer Stresseinwirkung und die DNA-Reparaturmechanismen der homologen Rekombination, des nicht-homologen End Joinings, der MisMatch-, der Basen-Exzision- und der Strang-Exzision-Reparatur spielen bei der zellulären Antwort eine tragende Rolle. Äußerst interessant sind weiterhin die hohen Aktivitäten RNA-gesteuerter Ereignisse, insbesondere von small nucleolar RNAs und Pseudouridin-Prozessen. Demnach scheinen diese RNA-modifizierenden Netzwerke einen bisher unbekannten funktionalen und schützenden Einfluss auf das Zellüberleben nach ionisierender Bestrahlung zu haben. All diese schützenden Netzwerke mit ihren zeitspezifischen Interaktionen sind essentiell für das Zellüberleben nach Einwirkung von oxidativem Stress und zeigen ein komplexes aber im Einklang befindliches Zusammenspiel vieler Einzelkomponenten zu einem systemweit ablaufenden Programm. / The use of radiotherapy in addition to chemotherapy and surgical removal is the most powerful instrument in the fight against malignant tumors in cancer medicine. After cardiovascular diseases, cancer is the second leading cause of death in the western world, in which prostate cancer is the most frequent male cancer. Despite continuous technological improvements in radiological instruments and prognosis, it may occur a recurrence up to many years after radiotherapy due to a high resistance capability of individual malignant cells of the locally occurring tumor. Although modern radiation biology has studied many aspects of the resistance mechanisms, questions are largely unanswered especially in regards to prognostic terms and time response of tumor cells to ionizing radiation.
As cellular models four prostate cancer cell lines with different radiation sensitivities (PC3, DuCaP, DU-145, RWPE-1) were cultured and tested for their ability to survive after exposure to ionizing radiation by a trypane blue and MTT viability assay. The proliferative capacity of the four cell lines was determined using a colony formation assay. The PC3 cell line (radiation-resistant) and the DuCaP cell line (radiation-sensitive) showed the maximal differences in terms of radiation sensitivity. Based on these results the two cell lines were selected to allow identification of potential prognostic marker for predicting the effectiveness of radiation therapy via their transcriptome-wide gene expression. Furthermore, a time series experiment with the radiation-resistant PC3 cell line was performed. At 8 different time points, during the period from 00:00 - 42:53 (hh:mm) after exposure with 1 Gy, the mRNA was quantified by next generation sequencing to investigate the dynamic behavior of time-delayed gene expression and to discover resistance mechanisms.
Of 10,966 expressed genes 730 were significant differentially expressed, determined by setting a fold change threshold in conjunction with a P-value < 0.01. Of those 305 were more strongly expressed in PC3 cell line and 425 were more strongly expressed in the DuCaP cell line. Within these 730 genes many known stress-associated genes could be found, such as the two trans-membrane protein genes CA9 and CA12, which are associated with increased radiation resistance. By calculating a network score interesting networks were derived by the GO and KEGG databases. In particular the GO categories aldehyde dehydrogenase [NAD(P)+] activity (GO:0004030) as well as the KEGG pathway of O-glycan biosynthesis (hsa00512) seems to be remarkably relevant. An interaction analysis revealed two promising networks with the transcription factors JUN and FOS as central elements. High expression of the JUN network would be stand as indicator for radiation resistance whereas a high expression of the FOS network is equated with radiation sensitivity.
Interesting insights could be achieved by analyzing the 10,840 expressed genes of the PC3 cell line and its expression profile over the 8 time points. Shortly after irradiation (00:00 - 00:30) a transcriptome-wide down-regulation occurred, within the next three, short time periods (00:30 - 01:03; 01:03 - 02:12; 02:12 - 04:38) a predominant increase of gene expression and the activation of protective networks followed, such as the up-regulation of DNA repair systems or the arresting of cell cycle. In the ensuing three time periods (4:38 - 09:43; 09:43 - 20:25; 20:25 - 42:35) a balance between gene induction and suppression was present and the absolute gene expression change was increased. When comparing the gene expression prior to irradiation with the last time point (00:00 - 42:53) 2,670 genes were differentially expressed, suggesting a massive and system-wide change of gene expression. Signaling pathways such as the ATM-regulated cell cycle and apoptosis, the Nrf2 pathway after oxidative stress exposure, the DNA repair mechanisms of homologous recombination, the non-homologous end joining, the mismatch repair, base-excision repair and strand-excision repair play a major role. Very interesting are the high activity of RNA-driven events, especially activities of small nucleolar RNAs and pseudouridine processes. This suggests that these RNA-modifying networks could have a hitherto unknown functional and protective effect on cell survival after exposure to ionizing radiation. All these protective networks and their time-specific interactions are essential for the survival of cells after exposure to oxidative stress and show a complex but consistent interaction of many individual components to a system-wide running program.
Identifer | oai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:6319 |
Date | January 2012 |
Creators | Hammer, Paul |
Publisher | Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Biochemie und Biologie |
Source Sets | Potsdam University |
Language | German |
Detected Language | German |
Type | Text.Thesis.Doctoral |
Format | application/pdf |
Rights | http://creativecommons.org/licenses/by-nc-sa/3.0/de/ |
Page generated in 0.0028 seconds