Return to search

Subunit Disassembly of Human Hemoglobin and the Site-specific Roles of Its Cysteine Residues

Hemoglobin plays an important role in transporting oxygen in human beings and other mammals. Hemoglobin is a tetrameric protein composed of two alpha and two beta subunits. The £\ and £] subunits are both necessary and the stoichiometric ratio of the two dislike subunits is critical for hemoglobin to perform its oxygen-carrying function properly. To better understand the coupling between the £\ and £] subunits and the subunit disassembly pathway, p-hydroxymercuri-benzoate (PMB) has been used to react with the cysteine residues in hemoglobin. The hemoglobin tetramer becomes unstable and disassembles into £\ and £] subunits when the cysteine sites are perturbed
upon reacting with PMB. There are three kinds of cysteine residues, £]93, £\104 and £]112, in human hemoglobin. The reactivity of different cysteine residues with PMB and their reaction sequence have been studied via the Matrix-assisted laser desorption
ionization time-of-flight mass spectrometry (MALDI-TOF MS). The resonance Raman spectroscopy has been used to investigate the structural changes of hemoglobin accompanying the PMB-modification under the oxygenated and deoxygenated conditions. At last, a hemoglobin subunit disassembly mechanism is proposed and the site-specific roles of cysteine residues in human hemoglobin are discussed in detail.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0728112-232038
Date28 July 2012
CreatorsKan, Heng-I
ContributorsKuo-Mei Chen, Ching-Mei Hsu, Chia C. Wang
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0728112-232038
Rightsuser_define, Copyright information available at source archive

Page generated in 0.0022 seconds