The prevalence of digital information management in an open network has driven
the need to maintain balance between anonymity, authenticity and accountability (AAA).
Anonymity allows a principal to hide its identity from strangers before trust relationship
is established. Authenticity ensures the correct identity is engaged in the transaction even
though it is hidden. Accountability uncovers the hidden identity when misbehavior of the
principal is detected. The objective of this research is to develop an AAA management
framework for secure resource allocations. Most existing resource management schemes
are designed to manage one or two of the AAA attributes. How to provide high strength
protection to all attributes is an extremely challenging undertaking. Our study shows that
the electronic cash (E-cash) paradigm provides some important knowledge bases for this
purpose. Based on Chaum-Pederson’s general transferable E-cash model, we propose a
timed-zero-knowledge proof (TZKP) protocol, which greatly reduces storage spaces and
communication overheads for resource transfers, without compromising anonymity and
accountability. Based on Eng-Okamoto’s general divisible E-cash model, we propose a hypercube-based divisibility framework, which provides a sophisticated and flexible way
to partition a chunk of resources, with different trade-offs in anonymity protection and
computational costs, when it is integrated with different sub-cube allocation schemes.
Based on the E-cash based resource management framework, we propose a privacy
preserving service oriented architecture (SOA), which allows the service providers and
consumers to exchange services without leaking their sensitive data. Simulation results
show that the secure resource management framework is highly practical for missioncritical
applications in large scale distributed information systems.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2689 |
Date | 15 May 2009 |
Creators | Lam, Tak Cheung |
Contributors | Liu, Jyh-Charn (Steve) |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | Book, Thesis, Electronic Dissertation, text |
Format | electronic, application/pdf, born digital |
Page generated in 0.0023 seconds