Return to search

Semantically-enriched and semi-autonomous collaboration framework for the Web of Things : design, implementation and evaluation of a multi-party collaboration framework with semantic annotation and representation of sensors in the Web of Things and a case study on disaster management

This thesis proposes a collaboration framework for the Web of Things based on the concepts of Service-oriented Architecture and integrated with semantic web technologies to offer new possibilities in terms of efficient asset management during operations requiring multi-actor collaboration. The motivation for the project comes from the rise in disasters where effective cross-organisation collaboration can increase the efficiency of critical information dissemination. Organisational boundaries of participants as well as their IT capability and trust issues hinders the deployment of a multi-party collaboration framework, thereby preventing timely dissemination of critical data. In order to tackle some of these issues, this thesis proposes a new collaboration framework consisting of a resource-based data model, resource-oriented access control mechanism and semantic technologies utilising the Semantic Sensor Network Ontology that can be used simultaneously by multiple actors without impacting each other’s networks and thus increase the efficiency of disaster management and relief operations. The generic design of the framework enables future extensions, thus enabling its exploitation across many application domains. The performance of the framework is evaluated in two areas: the capability of the access control mechanism to scale with increasing number of devices, and the capability of the semantic annotation process to increase in efficiency as more information is provided. The results demonstrate that the proposed framework is fit for purpose.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:732111
Date January 2015
CreatorsAmir, Mohammad
PublisherUniversity of Bradford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/10454/14363

Page generated in 0.0013 seconds